Published literature

Cancer Research (96) Products

  Human OneArray  
 Oncoscience. doi:10.18632/oncoscience.285.
 In silico and experimental analyses predict the therapeutic value of an EZH2 inhibitor GSK343 against hepatocellular carcinoma through the induction of metallothionein genes 
 
  Abstract
There are currently no effective molecular targeted therapies for hepatocellular carcinoma (HCC), the third leading cause of cancer-related death worldwide. Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 (H3K27)-specific methyltransferase, has been emerged as novel anticancer target. Our previous study has demonstrated that GSK343, an S-adenosyl-L-methionine (SAM)-competitive inhibitor of EZH2, induces autophagy and enhances drug sensitivity in cancer cells including HCC. In this study, an in silico study was performed and found that EZH2 was overexpressed in cancerous tissues of HCC patients at both gene and protein levels. Microarray analysis and in vitro experiments indicated that the anti-HCC activity of GSK343 was associated with the induction of metallothionein (MT) genes. In addition, the negative association of EZH2 and MT1/MT2A genes in cancer cell lines and tissues was found in public gene expression database. Taken together, our findings suggest that EZH2 inhibitors could be a good therapeutic option for HCC, and induction of MT genes was associated with the anti-HCC activity of EZH2 inhibitors.
   

  Human OneArray  
 Scientific Reports . doi: 10.1038/srep19156.
 A novel cell-penetrating peptide suppresses breast tumorigenesis by inhibiting 帣-catenin/LEF-1 signaling
 
 
 
  Abstract
The inhibition of 帣-catenin/LEF-1 signaling is an emerging strategy in cancer therapy. However, clinical targeted treatment of the 帣-catenin/LEF-1 complex remains relatively ineffective. Therefore, development of specific molecular targets is a key approach for identifying new cancer therapeutics. Thus, we attempted to synthesize a peptide (TAT-NLS-BLBD-6) that could interfere with the interaction of 帣-catenin and LEF-1 at nuclei in human breast cancer cells. TAT-NLS-BLBD-6 directly interacted with 帣-catenin and inhibited breast cancer cell growth, invasion, migration, and colony formation as well as increased arrest of sub-G1 phase and apoptosis; it also suppressed breast tumor growth in nude mouse and zebrafish xenotransplantation models, showed no signs of toxicity, and did not affect body weight. Furthermore, the human global gene expression profiles and Ingenuity Pathway Analysis software showed that the TAT-NLS-BLBD-6 downstream target genes were associated with the HER-2 and IL-9 signaling pathways. TAT-NLS-BLBD-6 commonly down-regulated 27 candidate genes in MCF-7 and MDA-MB-231 cells, which are concurrent with Wnt downstream target genes in human breast cancer. Our study suggests that TAT-NLS-BLBD-6 is a promising drug candidate for the development of effective therapeutics specific for Wnt/帣-catenin signaling inhibition.
   

  Human miRNA OneArray  
 PLOS Genetics. PLOS Genetics doi:10.1371/journal.pgen.1005726.
 fMiRNA-192 and miRNA-204 Directly Suppress lncRNA HOTTIP and Interrupt GLS1-Mediated Glutaminolysis in Hepatocellular Carcinoma
 
 
 
  Abstract
Accumulated evidence demonstrated that long non-coding RNAs (lncRNAs) play a pivotal role in tumorigenesis. However, it is still largely unknown how these lncRNAs were regulated by small ncRNAs, such as microRNAs (miRNAs), at the post-transcriptional level. We here use lncRNA HOTTIP as an example to study how miRNAs impact lncRNAs expression and its biological significance in hepatocellular carcinoma (HCC). LncRNA HOTTIP is a vital oncogene in HCC, one of the deadliest cancers worldwide. In the current study, we identified miR-192 and miR-204 as two microRNAs (miRNAs) suppressing HOTTIP expression via the Argonaute 2 (AGO2)-mediated RNA interference (RNAi) pathway in HCC. Interaction between miR-192 or miR-204 and HOTTIP were further confirmed using dual luciferase reporter gene assays. Consistent with this notion, a significant negative correlation between these miRNAs and HOTTIP exists in HCC tissue specimens. Interestingly, the dysregulation of the three ncRNAs was associated with overall survival of HCC patients. In addition, the posttranscriptional silencing of HOTTIP by miR-192, miR-204 or HOTTIP siRNAs could significantly suppress viability of HCC cells. On the contrary, antagonizing endogenous miR-192 or miR-204 led to increased HOTTIP expression and stimulated cell proliferation. In vivo mouse xenograft model also support the tumor suppressor role of both miRNAs. Besides the known targets (multiple 5 end HOX A genes, i.e. HOXA13), glutaminase (GLS1) was identified as a potential downstream target of the miR-192/-204-HOTTIP axis in HCC. Considering glutaminolysis as a crucial hallmark of cancer cells and significantly inhibited cell viability after silencingGLS1, we speculate that the miR-192/-204-HOTTIP axis may interrupt HCC glutaminolysis through GLS1 inhibition. These results elucidate that the miR-192/-204-HOTTIP axis might be an important molecular pathway during hepatic cell tumorigenesis. Our data in clinical HCC samples highlight miR-192, miR-204 and HOTTIP with prognostic and potentially therapeutic
   

  Human OneArray  
 Oncotarget. doi:10.18632/oncotarget.6327 .
 Overexpression of HE4 (human epididymis protein 4) enhances proliferation, invasion and metastasis of ovarian cancer
 
 
 
  Abstract
Overexpression of Human epididymis protein 4 (HE4) related with a role in ovarian cancer tumorigenesis while little is known about the molecular mechanism alteration by HE4 up regulation. Here we reported that overexpressed HE4 promoted ovarian cancer cells proliferation, invasion and metastasis. Furthermore, human whole genome gene expression profile microarrays revealed that 231 differentially expressed genes (DEGs) were altered in response to HE4, in which MAPK signaling, ECM receptor, cell cycle, steroid biosynthesis pathways were involved. The findings suggested that overexpressed HE4 played an important role in ovarian cancer progression and metastasis and that HE4 has the potential to serve as a novel therapeutic target for ovarian cancer.
   

  Human miRNA OneArray  
 Prostate. doi: 10.1002/pros.23068. Epub 2015 Aug 26..
 Hsa-miR-146a-5p modulates androgen-independent prostate cancer cells apoptosis by targeting ROCK1
 
 
 
  Abstract
Background MicroRNAs (miRNAs) have been demonstrated playing important roles in the procession of prostate cancer cells transformation from androgen-dependence to androgen-independence. Methods We conducted the miRNA microarray and realtime PCR analyses in both androgen-dependent (ADPC) and androgen-independent prostate cancer (AIPC) tissues. We also explored the role of hsa-miR-146a-5p (miR-146a) in MSKCC prostate cancer clinical database. Moreover, the impact of miR-146a on prostate cancer cells apoptosis were detected by Hoechst staining and fluorescence-activated cell sorter (FACS). Its target is predicted by DIANA LAB online database and the result was assumed by western blotting and luciferase assay. Results We demonstrated that miR-146a was down-regulated in AIPC tissues and cell lines compared to that in the ADPC tissues. In MSKCC data re-analyses, we found that miR-146a was underexpressed in metastatic prostate cancer tissues and those with Gleason score >8, moreover, low level of miR-146a represented a high biochemical relapse rate after radical prostatectomy. In the functional analyses, we transfected miR-146a mimics into CPRC cell lines and found miR-146a induced cells apoptosis. In mechanic analyses, we found that miR-146a inhibited the basal level of Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) expression by targeting its 3'UTR and an inverse correlation of expression between miR-146a and ROCK1 was observed. Moreover, caspase 3 activity was stimulated by miR-146a overexpression. Conclusion miR-146a has a critical role in the process of AIPC prostate cancer cells apoptosis through regulation of ROCK/Caspase 3 pathway. Targeting this pathway may be a promising therapeutic strategy for future personalized anti-cancer treatment.
   

   
 biochemical biophysical research communications. doi:10.1016/j.bbrc.2015.07.057.
 Regulation of tumorigenesis and metastasis of hepatocellular carcinoma tumor endothelial cells by microRNA-3178 and underlying mechanism
 
 
 
  Abstract
This study explored the effects of microRNA-3178 (miR-3178) on hepatocellular carcinoma (HCC) tumor endothelial cells (TECs) and on the target mRNA. Real-time polymerase chain reaction (PCR) was performed to detect the differential expression of miR-3178 in hepatic sinusoidal endothelial cells (HSECs) and HCC TECs. Furthermore, HCC TECs were transfected with miR-3178 mimic/inhibitor or their respective negative controls. The expression of miR-3178 before and after transfection was confirmed through RT-PCR. The effects of miR-3178 on the proliferation, apoptosis, cell cycle, invasion, migration, and angiogenesis of HCC TECs were also investigated through methyl thiazol tetrazolium assay, flow cytometry, matrigel invasion assay, transwell migration assay, and tube formation assay. Early growth responsive gene 3 (EGR3), as the putative target of miR-3178, was detected through RT-PCR and Western blot. Compared with HSECs, HCC TECs had lower miR-3178 expression levels (P < 0.001). MiR-3178 mimic inhibited proliferation, arrested cell cycle in G1 phase, and increased apoptosis. The numbers of migrated and invaded cells and capillary-like structures were significantly less in the mimic group than in the other groups. MiR-3178 mimic significantly decreased the mRNA and protein expression levels of EGR3. By contrast, miR-3178 inhibitor induced opposite effects. We conclude that miR-3178 was lowly expressed in HCC TECs, and miR-3178 mimic specifically inhibited the proliferation, migration, invasion, and angiogenesis and promoted the apoptosis and G1 phase arrest of HCC TECs in vitro through the inhibition of EGR3 expression. Thus, miR-3178 might be a critical target in HCC therapy.
   

  Human miRNA OneArray  
 Nature Cell Biology. 2015, 17(3):311-21. doi: 10.1038/ncb3110.
 Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis
 
 
 Einav Shoshan, Aaron K. Mobley, Russell R. Braeuer, Takafumi Kamiya, Li Huang, Mayra E. Vasquez, Ahmad Salameh, Ho Jeong Lee, Sun Jin Kim, Cristina Ivan, Guermarie Velazquez-Torres, Ka Ming Nip, Kelsey Zhu, Denise Brooks, Steven J. M. Jones, Inanc Birol,Maribel Mosqueda, Yu-ye Wen, Agda Karina Eterovic, Anil K. Sood, Patrick Hwu, Je rey E. Gershenwald, A. Gordon Robertson, George A. Calin, GalMarkel, Isaiah J. Fidler, Menashe Bar-Eli
  Abstract
Although recent studies have shown that adenosine-to-inosine (A-to-I) RNA editing occurs in microRNAs (miRNAs), its effects on tumour growth and metastasis are not well understood. We present evidence of CREB-mediated low expression of ADAR1 in metastatic melanoma cell lines and tumour specimens. Re-expression of ADAR1 resulted in the suppression of melanoma growth and metastasis in vivo. Consequently, we identified three miRNAs undergoing A-to-I editing in the weakly metastatic melanoma but not in strongly metastatic cell lines. One of these miRNAs, miR-455-5p, has two A-to-I RNA-editing sites. The biological function of edited miR-455-5p is different from that of the unedited form, as it recognizes a different set of genes. Indeed, wild-type miR-455-5p promotes melanoma metastasis through inhibition of the tumour suppressor gene CPEB1. Moreover, wild-type miR-455 enhances melanoma growth and metastasis in vivo, whereas the edited form inhibits these features. These results demonstrate a previously unrecognized role for RNA editing in melanoma progression.
   

  Human OneArray  
 Journal Of Biological Chemistry. 2015, 290(14):9101-10. doi: 10.1074/jbc.M114.631580.
 Gefitinib-mediated ROS instigates mitochondrial dysfunction and drug resistance in lung cancer cells
 
 
 Imoh S. Okon, Kathleen A. Coughlan, Miao Zhang, Qiongxin Wang, Ming-Hui Zou
  Abstract
Therapeutic benefits offered by tyrosine kinase inhibitors (TKIs), such as gefitinib (Iressa) and erlotinib (Tarceva), are limited due to the development of resistance, which contributes to treatment failure and cancer-related mortality. The aim of this study was to elucidate mechanistic insight into cellular perturbations that accompany acquired gefitinib resistance in lung cancer cells. Several lung adenocarcinoma (LAD) cell lines were screened to characterize epidermal growth factor receptor (EGFR) expression and mutation profile. To circumvent intrinsic variations between cell lines with respect to response to drug treatments, we generated gefitinib-resistant H1650 clone by long-term, chronic culture under gefitinib selection of parental cell line. Isogenic cells were analyzed by microarray, Western blot, flow cytometry, and confocal and transmission electron microscope. We observed that although chronic gefitinib treatment provided effective action against its primary target (aberrant EGFR activity), secondary effects resulted in increased cellular reactive oxygen species (ROS). Gefitinib-mediated ROS correlated with epithelial-mesenchymal transition, as well as striking perturbation of mitochondrial morphology and function. However, gefitinib treatment in the presence of ROS scavenger provided a partial rescue of mitochondrial aberrations. Furthermore, withdrawal of gefitinib from previously resistant clones correlated with normalized expression of epithelial-mesenchymal transition genes. These findings demonstrate that chronic gefitinib treatment promotes ROS and mitochondrial dysfunction in lung cancer cells. Antioxidants may alleviate ROS-mediated resistance.
   

  Human OneArray  
 Journal of Experimental & Clinical Cancer Research. 2015, 12;34:16. doi: 10.1186/s13046-015-0132-y.
 Gene expression profile analyze the molecular mechanism of CXCR7 regulating papillary thyroid carcinoma growth and metastasi
 
 
 Hengwei Zhang, Xuyong Teng, Zhangyi Liu, Lei Zhang, Zhen Liu
  Abstract
Background: To detect genetic expression profile alterations after papillary thyroid carcinoma (PTC) cells transfected with chemokine receptor CXCR7 gene by gene microarray, and gain insights into molecular mechanisms of how CXCR7 regulating PTC growth and metastasis. Methods: The Human OneArray microarray was used for a complete genome-wide transcript profiling of CXCR7 transfected PTCs (K1-CXCR7 cells), defined as experimental group. Non CXCR7 transfected PTCs (K1 cells) were used as control group. Differential analysis for per gene was performed with a random variance model and t test, p values were adjusted to control the false discovery rate. Gene ontology (GO) on differentially expressed genes to identify the biological processes in modulating the progression of papillary thyroid carcinoma. Pathway analysis was used to evaluate the signaling pathway that differentially expressed genes were involved in. In addition, quantitative real-time polymerase chain reaction (q-PCR) and Western blot were used to verify the top differentially expression genes. Results: Comparative analysis revealed that the expression level of 1149 genes was changed in response to CXCR7 transfection. After unsupervised hierarchical clustering analysis, 270 differentially expressed genes were filtered, of them 156 genes were up-regulated whereas 114 genes were down-regulated in K1-CXCR7 cells. GO enrichment analysis revealed the differentially expressed genes were mainly involved in biopolymer metabolic process, signal transduction and protein metabolism. Pathway enrichment analysis revealed differentially expressed genes were mainly involved in ECM-receptor interaction, Focal adhesion, MAPK signaling pathway and Cytokine-cytokine receptor interaction pathway. More importantly, the expression level of genes closely associated with tumor growth and metastasis was altered significantly in K1-CXCR7 cells, including up-regulated genes FN1, COL1A1, COL4A1, PDGFRB, LTB, CXCL12, MMP-11, MT1-MMP and down-regulated genes ITGA7, and Notch-1. Conclusions: Gene expression profiling analysis of papillary thyroid carcinoma can further delineate the mechanistic insights on how CXCR7 regulating papillary thyroid carcinoma growth and metastasis. CXCR7 may regulate growth and metastasis of papillary thyroid carcinoma via the activation of PI3K/AKT pathway and its downstream NF-庥B signaling, as well as the down-regulation of Notch signaling.
   

  Human OneArray  
 Annals of Thoracic Surgery. 2015, 99(4):1149-56. doi: 10.1016/j.athoracsur.2014.08.085.
 Ex vivo four-dimensional lung cancer model mimics metastasis
 
 
 Dhruva K. Mishra, Chad J. Creighton, Yiqun Zhang, Fengju Chen, Michael J. Thrall, Min P. Kim
  Abstract
BACKGROUND: We have developed a four-dimensional (4D) lung cancer model that forms perfusable tumor nodules. We determined if the model could be modified to mimic metastasis. METHODS: We modified the 4D lung cancer model by seeding H1299, A549, or H460 cells through the trachea only to the left lobes of the acellular lung matrix. The model was modified so that the tumor cells can reach the right lobes of the acellular lung matrix only through the pulmonary artery as circulating tumor cells (CTC). We determined the gene expressions of the primary tumor, CTCs, and metastatic lesions using the Human OneArray chip. RESULTS: All cell lines formed a primary tumor in the left lobe of the ex vivo 4D lung cancer model. The CTCs were identified in the media and increased over time. All cell lines formed metastatic lesions with H460 forming significantly more metastatic lesions than H1299 and A549 cells. The CTC gene signature predicted poor survival in lung cancer patients. Unique genes were significantly expressed in CTC compared with the primary tumor and metastatic lesion. CONCLUSIONS: The 4D lung cancer model can isolate tumor cells in 3 phases of tumor progression. This 4D lung cancer model may mimic the biology of lung cancer metastasis and may be used to determine its mechanism and potential therapy in the future.
   

  Human miRNA OneArray  
 Tumor Biology. 2015, 36(1):219-25. doi: 10.1007/s13277-014-2622-5.
 miR-1285-3p acts as a potential tumor suppressor miRNA via downregulating JUN expression in hepatocellular carcinoma
 
 
 Jibing Liu, Jingchen Yan, Changchun Zhou, Zhenbin Yang, Qinghua Ma, Qingyan Jin
  Abstract
In the world, hepatocellular carcinoma (HCC) is one of the most common and most lethal cancers. Currently, standard therapy for unresectable HCC is a local-regional therapy with transarterial chemoembolisation (TACE). In this study, we sought to assess whether plasma circulating microRNAs (miRNAs) can be used to predict the prognosis of HCC patients receiving the TACE treatment. Firstly, we systematically examined TACE therapeutic effectiveness-related circulating miRNAs through miRNA Profiling Chips. As a result, we identified 19 circulating miRNAs to be significantly differentially expressed between the TACE-response group and the TACE-nonresponse group. In the second stage, we performed quantitative analyses of these candidate miRNAs in additional HCC patients treated with TACE and validated two of the aforementioned 19 miRNAs (miR-1285-3p and miR-4741) as candidate biomarkers for predicting prognosis of TACE. Interestingly, we found that miR-1285-3p could directly repress JUN oncogene expression in HCC cells, indicating miR-1285-3p could act as a potential tumor suppressor. In conclusion, our data indicate that circulating miR-1285-3p and miR-4741 was predictive of response to TACE therapy in HCC.
   

  Human OneArray  
 Oncogene. 2015, 34(10):1207-19. doi: 10.1038/onc.2014.43.
 B-cell lymphoma/leukemia 10 promotes oral cancer progression through STAT1/ATF4/S100P signaling pathway
 
 
 T-S Wu, C-T Tan, C-C Chang, B-R Lin, W-T Lai, S-T Chen, M Yen-Ping Kuo, C-L Rau, F-S Jaw, H-H Chang
  Abstract
B-cell lymphoma/leukemia 10 (BCL10) is an apoptotic regulatory protein related to advanced TNM stage and disease recurrence in oral squamous cell carcinoma (OSCC). However, the regulatory mechanism of BCL10 in OSCC progression is still unknown. Here, we showed that knockdown of endogenous BCL10 could significantly reduce cell migration and invasion abilities, retard cell proliferation by G0/G1 phase accumulation and inhibit tumorigenicity in vivo. In molecular level, we identified S100P as a crucial downstream effector of BCL10-inhibited OSCC progression by high-throughput microarray analysis. S100P messenger RNA and protein expression levels were significantly diminished in silenced-BCL10 clones, and transfected S100P expression plasmids restored migration, invasion, proliferation abilities and tumorigenicity in shBCL10 transfectants. Furthermore, we provided evidence that BCL10 regulated S100P expression through signal transducers and activators of transcription 1 (STAT1) and activating transcription factor 4 (ATF4). Knockdown of BCL10 decreased S100P promoter activity, but showed no effect in truncated STAT1/ATF4 S100P promoter. In addition, we also found that the P50/P65 signaling pathway was involved in BCL10-enhanced OSCC progression. Restored S100P in silenced-BCL10 clones could markedly reverse P65 activation via outside-in signaling. Taken together, we discovered a novel axis of BCL10-regulated OSCC progression via STAT1/ATF4/S100P/P65 signaling, which could predict the prognosis of OSCC and will be beneficial for developing therapeutic strategy against advanced OSCC.
   

  Human OneArray  
 Oncotarget. 2015, 6(7):4976-91.
 Novel oral histone deacetylase inhibitor, MPT0E028, displays potent growth-inhibitory activity against human B-cell lymphoma in vitro and in vivo
 
 
 Han-Li Huang, Chieh-Yu Peng, Mei-Jung Lai, Chun-Han Chen, Hsueh-Yun Lee, Jing-Chi Wang, Che-Ming Teng, Shiow-Lin Pan, Jing-Ping Liou
  Abstract
Histone deacetylase (HDAC) inhibitor has been a promising therapeutic option in cancer therapy due to its ability to induce growth arrest, differentiation, and apoptosis. In this study, we demonstrated that MPT0E028, a novel HDAC inhibitor, reduces the viability of B-cell lymphomas by inducing apoptosis and shows a more potent HDAC inhibitory effect compared to SAHA, the first HDAC inhibitor approved by the FDA. In addition to HDACs inhibition, MPT0E028 also possesses potent direct Akt targeting ability as measured by the kinome diversity screening assay. Also, MPT0E028 reduces Akt phosphorylation in B-cell lymphoma with an IC50 value lower than SAHA. Transient transfection assay revealed that both targeting HDACs and Akt contribute to the apoptosis induced by MPT0E028, with both mechanisms functioning independently. Microarray analysis also shows that MPT0E028 may regulate many oncogenes expression (e.g., TP53, MYC, STAT family). Furthermore, in vivo animal model experiments demonstrated that MPT0E028 (50-200 mg/kg, po, qd) prolongs the survival rate of mice bearing human B-cell lymphoma Ramos cells and inhibits tumor growth in BJAB xenograft model. In summary, MPT0E028 possesses strong in vitro and in vivo activity against malignant cells, representing a potential therapeutic approach for cancer therapy.
   

  Data Analysis  
 Lung. 2015, 193(4):583-92. doi: 10.1007/s00408-015-9726-6.
 Identification of Commonly Dysregulated Genes in Non-small-cell Lung Cancer by Integrated Analysis of Microarray Data and qRT-PCR Validation
 
 
 Zi-Qiang Tian, Zhen-Hua Li, Shi-Wang Wen, Yue-Feng Zhang, Yong Li, Jing-Ge Cheng, Gui-Ying Wang
  Abstract
BACKGROUND: Non-small-cell lung cancer (NSCLC), the most common lung cancer, leads to the largest number of cancer-related deaths worldwide. There are many studies to identify the differentially expressed genes (DEGs) between NSCLC and normal control (NC) tissues by means of microarray technology. Because of the inconsistency of the microarray data sets, we performed an integrated analysis to identify DEGs and analyzed their biological function. METHODS AND RESULTS: We combined 15 microarray data sets and identified 1063 DEGs between NSCLC and NC tissues; in addition, we found that the DEGs were enriched in regulation of cell proliferation process and focal adhesion signaling pathway. The protein-protein interaction network analysis for the top 20 significantly DEGs revealed that CAV1, COL1A1, and ADRB2 were the significant hub proteins. Finally, we employed qRT-PCR to validate the meta-analysis approach by determining the expression of the top 10 most significantly DEGs and found that the expression of these genes were significantly different between tumor and NC tissues, in accordance with the results of meta-analysis. CONCLUSION: qRT-PCR results indicated that the meta-analysis approach in our study was acceptable. Our data suggested that some of the DEGs, including MMP12, COL11A1, THBS2, FAP, and CAV1, may participate in the pathology of NSCLC and could be applied as potential markers or therapeutic targets for NSCLC.
   

  Human OneArray  
 Journal of Hepatology. 2015, 62(4):879-88. doi: 10.1016/j.jhep.2014.11.010.
 Endoplasmic reticulum heat shock protein gp96 maintains liver homeostasis and promotes hepatocellular carcinogenesis
 
 
 Saleh Rachidi, Shaoli Sun, Bill X. Wu, Elizabeth Jones, Richard R. Drake, Besim Ogretmen, L. Ashley Cowart, Christopher J. Clarke, Yusuf A. Hannun, Gabriela Chiosis, Bei Liu, Zihai Li
  Abstract
Background & Aims: gp96, or grp94, is an endoplasmic reticulum (ER)-localized heat shock protein 90 paralog that acts as a protein chaperone and plays an important role for example in ER homeostasis, ER stress, Wnt and integrin signaling, and calcium homeostasis, which are vital processes in oncogenesis. However, the cancer-intrinsic function of gp96 remains controversial. Methods: We studied the roles of gp96 in liver biology in mice via an Albumin promoter-driven Cre recombinase-mediated disruption of gp96 gene, hsp90b1. The impact of gp96 status on hepatic carcinogenesis in response to diethyl-nitrosoamine (DENA) was probed. The roles of gp96 on human hepatocellular carcinoma cells (HCC) were also examined pharmacologically with a targeted gp96 inhibitor. Results: We demonstrated that gp96 maintains liver development and hepatocyte function in vivo, and its loss genetically promotes adaptive accumulation of long chain ceramides, accompanied by steatotic regeneration of residual gp96+ hepatocytes. The need for compensatory expansion of gp96+ cells in the gp96− background predisposes mice to develop carcinogen-induced hepatic hyperplasia and cancer from gp96+ but not gp96− hepatocytes. We also found that genetic and pharmacological inhibition of gp96 in human HCCs perturbed multiple growth signals, and attenuated proliferation and expansion.
   

  Human OneArray  
 International Journal of Oncology. 2015, 46(6):2639-48. doi: 10.3892/ijo.2015.2964.
 The role of WWOX tumor suppressor gene in the regulation of EMT process via regulation of CDH1-ZEB1-VIM expression in endometrial cancer
 
 
 Nowakowska M, Pospiech K, Stępień A, Wołkowicz M, Gałdyszyńska M, Popęda M, Wójcik-Krowiranda K, Bieńkiewicz A, Bednarek AK, Elżbieta Płuciennik
  Abstract
This study defines the role of WWOX in the regulation of epithelial to mesenchymal transition. A group of 164 endometrial adenocarcinoma patients was studied as well as an ECC1 well-differentiated steroid-responsive endometrial cell line, which was transducted with WWOX cDNA by a retroviral system. The relationship between WWOX gene and EMT marker (CDH1, VIM, ZEB1, SNAI1) expression on mRNA (RT-qPCR) and protein levels (western blotting) was evaluated. The EMT processes were also analysed in vitro by adhesion of cells to extracellular matrix proteins, migration through a basement membrane, anchorage-independent growth and MMP activity assay. DNA microarrays (HumanOneArray™) were used to determine WWOX-dependent pathways in an ECC1 cell line. A positive correlation was observed between WWOX and ZEB1, and a negative correlation between CDH1 and VIM. WWOX expression was found to inversely correlate with the risk of recurrence of tumors in patients. However, in the WWOX-expressing ECC1 cell line, WWOX expression was found to be inversely related with VIM and positively with CDH1. The ECC1/WWOX cell line variant demonstrated increased migratory capacity, with increased expression of metalloproteinases MMP2/MMP9. However, these cells were not able to form colonies in suspension and revealed decreased adhesion to fibronectin and fibrinogen. Microarray analysis demonstrated that WWOX has an impact on the variety of cellular pathways including the cadherin and integrin signalling pathways. Our results suggest that the WWOX gene plays a role in the regulation of EMT processes in endometrial cancer by controlling the expression of proteins associated with cell motility, thus influencing tissue remodeling, with the suppression of mesenchymal markers.
   

  Human miRNA OneArray  
 BMC Genomics. 2015, 16:501. doi: 10.1186/s12864-015-1642-x.
 Reorganization of metastamiRs in the evolution of metastatic aggressive neuroblastoma cells
 
 
 Faizan H Khan, Vijayabaskar Pandian, Satishkumar Ramraj, Sheeja Aravindan, Terence S Herman, Natarajan Aravindan
  Abstract
Background: MetastamiRs have momentous clinical relevance and have been correlated with disease progression in many tumors. In this study, we identified neuroblastoma metastamiRs exploiting unique mouse models of favorable and high-risk metastatic human neuroblastoma. Further, we related their deregulation to the modulation of target proteins and established their association with clinical outcomes. Results: Whole genome miRNA microarray analysis identified 74 metastamiRs across the manifold of metastatic tumors. RT-qPCR on select miRNAs validated profile expression. Results from bio-informatics across the ingenuity pathway, miRCancer, and literature data-mining endorsed the expression of these miRNAs in multiple tumor systems and showed their role in metastasis, identifying them as metastamiRs. Immunoblotting and TMA-IHC analyses revealed alterations in the expression/phosphorylation of metastamiRs targets, including ADAMTS-1, AKT1/2/3, ASK1, AURK帣, Birc1, Birc2, Bric5, 帣-CATENIN, CASP8, CD54, CDK4, CREB, CTGF, CXCR4, CYCLIN-D1, EGFR, ELK1, ESR1, CFOS, FOSB, FRA, GRB10, GSK3帣, IL1帢, JUND, kRAS, KRTAP1, MCP1, MEGF10, MMP2, MMP3, MMP9, MMP10, MTA2, MYB, cMYC, NF2, NOS3, P21, pP38, PTPN3, CLEAVED PARP, PKC, SDF-1帣, SEMA3D, SELE, STAT3, TLR3, TNF帢, TNFR1, and VEGF in aggressive cells ex vivo and in a manifold of metastatic tumors in vivo. miRNA mimic (hsa-miR-125b, hsa-miR-27b, hsa-miR-93, hsa-miR-20a) and inhibitor (hsa-miR-1224-3p, hsa-miR-1260) approach for select miRNAs revealed the direct influence of the altered metastamiRs in the regulation of identified protein targets. Clinical outcome association analysis with the validated metastamiRs targets corresponded strongly with poor overall and relapse-free survival. Conclusions: For the first time, these results identified a comprehensive list of neuroblastoma metastamiRs, related their deregulation to altered expression of protein targets, and established their association with poor clinical outcomes. The identified set of distinctive neuroblastoma metastamiRs could serve as potential candidates for diagnostic markers for the switch from favorable to high-risk metastatic disease.
   

  Human miRNA OneArray  
 Oncology Reports. 2015, 34(1):318-24. doi: 10.3892/or.2015.3953.
 Microarray analysis of the aberrant microRNA expression pattern in gliomas of different grades
 
 
 Xiao-Peng Zhu, Ke-Jie Mou, Qing-Fu Xu, Jun-Hai Tang, Guo-Hao Huang, Jian-Ping Xu, Guang-Hui Li, Si-Jin Ai, Jean-Phillippe Hugnot, Zheng Zhou, Sheng-Qing Lv
  Abstract
Previous studies have focused on miRNA expression in brain gliomas. However, both the expression pattern of miRNAs in gliomas of different grades and various miRNAs involved in malignant progression of gliomas are poorly understood. In the present study, we used miRNA microarray-based screening to investigate the miRNA expression profile in gliomas, which was further verified by qRT-PCR in selected miRNAs. In total, we found 13 differentially expressed miRNAs between gliomas and their matched surrounding tissues. Among them, 12 miRNAs were upregulated and only one (miR-4489) was downregulated compared with the control. Furthermore, the lower expression level of miR-4489 was confirmed by qRT-PCR in 26 glioma samples. Our microarray result revealed 8, 9 and 15 aberrantly expressed miRNAs in gliomas of World Health Organization (WHO) grade II-IV, respectively. Gene Ontology (GO) and Pathway analysis indicated that target genes of the 13 miRNAs were significantly enriched in central nervous system- and tumor‑related biological processes and signaling pathways. The dysregulated miRNAs identified in the present study contribute to the tumorigenesis and malignant progression of gliomas and may serve as useful markers for advanced glioma pathological grading and prognosis.
   

  Human OneArray  
 Clinical & Experimental Metastasis. 2015, 32(5):417-28. doi: 10.1007/s10585-015-9712-7.
 Loss of PCDH9 is associated with the differentiation of tumor cells and metastasis and predicts poor survival in gastric cancer
 
 
 Ying Chen, Honggang Xiang, Yingfan Zhang, Jiejun Wang, Guanzhen Yu
  Abstract
Microarray studies revealed down-regulation of PCDH9 mRNA level in lymph node metastasis of gastric cancer compared with the primary tumors. The expression of PCDH9 protein and its clinicopathological relevance were assessed on tissue microarrays of 1072 cases of gastric cancer. Its prognostic value was further evaluated on a small cohort of 175 gastric cancers. PCDH9 was down-regulated during the development and progression of gastric cancer. The overall rates of PCDH9 expression in normal, primary tumor, nodal and hepatic metastatic tissues were 100 % (1072/1072), 48.0 % (515/1072), 20.1 % (34/169), and 5.6 % (1/18), respectively. Positive staining of PCDH9 protein was significantly reversely correlated with tumor size, tumor differentiation, tumor invasion, lymph node metastasis, and disease progression. The Cox proportional hazards model revealed that the PCDH9 was an independent prognostic factor for gastric cancer. Therefore, decreased expression of PCDH9 is frequent in human gastric cancer metastasis and PCDH9 expression is an independent prognostic factor, suggesting that PCDH9 could be a promising biomarker of this malignanc
   

  Human OneArray  
 Cancer Research. 2015, 75(10):1992-2004. doi: 10.1158/0008-5472.CAN-14-0611.
 The Endogenous Cell-Fate Factor Dachshund restrains Prostate Epithelial Cell Migration via Repression of Cytokine Secretion via a CXCL Signaling Module
 
 
 Ke Chen, Xuanmao Jiao, Liping Wang, Xiaoming Ju, Min Wang, Gabriele Di Sante, Shaohua Xu, Qiong Wang, Kevin Li, Xin Sun, Congwen Xu, Zhiping Li, Mathew C. Casimiro, Adam Ertel, Sankar Addya, Peter McCue, Michael P. Lisanti, Chenguang Wang, Richard J. Davis, Graeme Mardon, Kongming Wu, Richard G. Pestell
  Abstract
Prostate cancer is the second leading form of cancer-related death in men. In a subset of prostate cancer patients, increased chemokine signaling IL8 and IL6 correlates with castrate-resistant prostate cancer (CRPC). IL8 and IL6 are produced by prostate epithelial cells and promote prostate cancer cell invasion; however, the mechanisms restraining prostate epithelial cell cytokine secretion are poorly understood. Herein, the cell-fate determinant factor DACH1 inhibited CRPC tumor growth in mice. Using Dach1(fl/fl)/Probasin-Cre bitransgenic mice, we show IL8 and IL6 secretion was altered by approximately 1,000-fold by endogenous Dach1. Endogenous Dach1 is shown to serve as a key endogenous restraint to prostate epithelial cell growth and restrains migration via CXCL signaling. DACH1 inhibited expression, transcription, and secretion of the CXCL genes (IL8 and IL6) by binding to their promoter regulatory regions in chromatin. DACH1 is thus a newly defined determinant of benign and malignant prostate epithelium cellular growth, migration, and cytokine abundance in vivo.
   

  Human OneArray  
 Oncogene. 2014 Dec 22. doi: 10.1038/onc.2014.409.
 NCOA3-mediated upregulation of mucin expression via transcriptional and post-translational changes during the development of pancreatic cancer
 
 
 S Kumar, S Das, S Rachagani, S Kaur, S Joshi, SL Johansson, MP Ponnusamy, M Jain, SK Batra
  Abstract
Pancreatic cancer (PC) is characterized by aberrant overexpression of mucins that contribute to its pathogenesis. Although the inflammatory cytokines contribute to mucin overexpression, the mucin profile of PC is markedly distinct from that of normal or inflamed pancreas. We postulated that de novo expression of various mucins in PC involves chromatin modifications. Analysis of chromatin modifying enzymes by PCR array identified differential expression of NCOA3 in MUC4-expressing PC cell lines. Immunohistochemistry analysis in tumor tissues from patients and spontaneous mouse models, and microarray analysis following the knockdown of NCOA3 were performed to elucidate its role in mucin regulation and overall impact on PC. Silencing of NCOA3 in PC cell lines resulted in significant downregulation of two most differentially expressed mucins in PC, MUC4 and MUC1 (P<0.01). Immunohistochemistry analysis in PC tissues and metastatic lesions established an association between NCOA3 and mucin (MUC1 and MUC4) expression. Spontaneous mouse model of PC (K-rasG12D; Pdx-1cre) showed early expression of Ncoa3 during pre-neoplastic lesions. Mechanistically, NCOA3 knockdown abrogated retinoic acid-mediated MUC4 upregulation by restricting MUC4 promoter accessibility as demonstrated by micrococcus nuclease digestion (P<0.05) and chromatin immuno-precipitation analysis. NCOA3 also created pro-inflammatory conditions by upregulating chemokines like CXCL1, 2, 5 and CCL20 (P<0.001). AKT, ubiquitin C, ERK1/2 and NF-庥B occupied dominant nodes in the networks significantly modulated after NCOA3 silencing. In addition, NCOA3 stabilized mucins post translationally through fucosylation by FUT8, as the knockdown of FUT8 resulted in the downregulation of MUC4 and MUC1 at protein levels.
   

  Human OneArray  
 Oncotarget. 2014, 5(20):9838-50.
 A novel action mechanism for MPT0G013, a derivative of arylsulfonamide, inhibits tumor angiogenesis through upregulation of TIMP3 expression
 
 
 Chih-Ya Wang, Jing-Ping Liou, An-Chi Tsai, Mei-Jung Lai, Yi-Min Liu, Hsueh-Yun Lee, Jing-Chi Wang, Che-Ming Teng, Shiow-Lin Pan
  Abstract
Tissue inhibitors of metalloproteinases 3 (TIMP3) were originally characterized as inhibitors of matrix metalloproteinases (MMPs), acting as potent antiangiogenic proteins. In this study, we demonstrated that the arylsulfonamide derivative MPT0G013 has potent antiangiogenic activities in vitro and in vivo viainducing TIMP3 expression. Treatments with MPT0G013 significantly inhibited endothelial cell functions, such as cell proliferation, migration, and tube formation, as well as induced p21 and cell cycle arrest at the G0/G1 phase. Subsequent microarray analysis showed significant induction of TIMP3 gene expression by MPT0G013, and siRNA-mediated blockage of TIMP3 up-regulation abrogated the antiangiogenic activities of MPT0G013 and prevented inhibition of p-AKT and p-ERK proteins. Importantly, MPT0G013 exhibited antiangiogenic activities in in vivo Matrigel plug assays, inhibited tumor growth and up-regulated TIMP3 and p21 proteins in HCT116 mouse xenograft models. These data suggest potential therapeutic application of MPT0G013 for angiogenesis-related diseases such as cancer.
   

  Human miRNA OneArray  
 International Journal of Clinical and Experimental Medicine. 2014, 7(12): 52265234.
 Aberrant expression of microRNAs in serum may identify individuals with pancreatic cancer
 
 
 Wei-Chang Chen, Heng-Jun Gao, Hai-Hui Sheng, Mao-Song Lin, Jun-Xing Huang
  Abstract
Pancreatic cancer (PC) has the poorest survival rate among all types of human cancer due to the lack of sensitive and non-invasive diagnostic screen methods for PC screening. Our aim was to identify novel serum microRNA (miRNA) biomarkers for the early detection of PC. We used microarray to screen differential expression of miRNAs in two pooled serum samples (6 PC patients and 6 healthy controls). A panel of miRNAs (22 over-expression and 23 decreased) were deregulated in serum of PC patients in comparison to controls. The expressions of 8 selected miRNAs were further evaluated in sera from 49 PC patients and 27 controls using quantitative reverse transcription-polymerase chain reaction. The levels of serum miR-492 and miR-663a were significantly decreased in PC patients compared with controls (P < 0.05). ROC curve analysis showed that serum miR-492 and miR-663a yield an AUC of 0.787 with 75.5% sensitivity and 70.0% specificity and 0.870 with 85.7% sensitivity and 80.0% specificity, respectively, for discriminating between PC patients and healthy controls. In addition, the level of miR-663a was significantly and inversely associated with TNM stage (P = 0.027). These results suggested that serum miR-492 and miR-663a could have strong potential as novel non-invasive biomarkers for the early detection of PC.
   

  Human OneArray  
 Oncotarget. 2014 Nov 17.
 Transcriptomic profiling of taxol-resistant ovarian cancer cells identifies FKBP5 and the androgen receptor as critical markers of chemotherapeutic response
 
 
 Nian-Kang Sun, Shang-Lang Huang, Pu-Yuan Chang, Hsing-Pang Lu, Chuck C.-K. Chao
  Abstract
Taxol is a mitotoxin widely used to treat human cancers, including of the breast and ovary. However, taxol resistance (txr) limits treatment efficacy in human patients. To study chemoresistance in ovarian cancer, we established txr ovarian carcinoma cells derived from the SKOV3 cell lineage. The cells obtained were cross-resistant to other mitotoxins such as vincristine while they showed no resistance to the genotoxin cisplatin. Transcriptomic analysis identified 112 highly up-regulated genes in txr cells. Surprisingly, FK506-binding protein 5 (FKBP5) was transiently up-regulated 100-fold in txr cells but showed decreased expression in prolonged culture. Silencing of FKBP5 sensitized txr cells to taxol, whereas ectopic expression of FKBP5 increased resistance to the drug. Modulation of FKBP5 expression produced similar effects in response to vincristine but not to cisplatin. We observed that a panel of newly identified txr genes was trancriptionally regulated by FKBP5 and silencing of these genes sensitized cells to taxol. Notably, immunoprecipitation experiments revealed that FKBP5 forms a protein complex with the androgen receptor (AR), and this complex regulates the transcriptional activity of both proteins. Furthermore, we found that the Akt kinase pathway is regulated by FKBP5. These results indicate that the FKBP5/AR complex may affect cancer cell sensitivity to taxol by regulating expression of txr genes. Our findings suggest that mitotoxin-based treatment against ovarian cancer should be avoided when the Akt/FKBP5/AR axis is activated.
   

  Array technology and applications  
 Advances in Clinical Chemistry. 2014 Nov 4. doi:10.1016/bs.acc.2014.09.007.
 Circulating microRNAs as Promising Tumor Biomarkers
 
 
 Qing H. Meng, Meng Chen, George A. Calin
  Abstract
microRNAs (miRNAs) are small, nonprotein-coding RNAs that function as posttranscriptional regulators of target genes. miRNAs are involved in multiple cell differentiation, proliferation, and apoptosis processes that are closely related to tumorigenesis. Circulating miRNAs are promising cancer biomarkers under development with great translational potential in personalized medicine. Here, we describe the origin and function of circulating miRNAs and compare the current new high-throughput technology applied to miRNA quantitation. The latest publications on circulating miRNAs were summarized, indicating that miRNAs are potential biomarkers of diagnosis, prognosis, and treatment response of major cancer types including prostate, breast, lung, colorectal, and hematological cancers. We addressed the strengths and limitations of applying circulating miRNAs in clinical laboratory and several issues associated with the accurate measurement of circulating miRNAs.
   

  Human miRNA OneArray  
 Oncogene. 2014 Jun 23. doi: 10.1038/onc.2014.177.
 HSF1 regulation of 帣-catenin in mammary cancer cells through control of HuR/elavL1 expression
 
 
 SK Calderwood, S-D Chou, A Murshid, T Eguchi, J Gong
  Abstract
There is now compelling evidence to indicate a place for heat shock factor 1 (HSF1) in mammary carcinogenesis, tumour progression and metastasis. Here we have investigated a role for HSF1 in regulating the expression of the stem cell renewal factor 帣-catenin in immortalized humanmammary epithelial and carcinoma cells. We found HSF1 to be involved in regulating the translation of 帣-catenin, by investigating effects of gain and loss of HSF1 on this protein. Interestingly, although HSF1 is a potent transcription factor, it was not directly involved in regulating levels of 帣-catenin mRNA. Instead, our data suggest a complex role in translational regulation. HSF1 was shown to regulate levels of the RNA-binding protein HuR that controlled 帣-catenin translation. An extra complexity was added to this scenario when it was shown that the long non-coding RNA molecule lincRNA-p21, known to be involved in 帣-catenin mRNA (CTNNB1) translational regulation, was controlled by HSF1 repression. We have shown previously thatHSF1 was positively regulated through phosphorylation by mammalian target of rapamycin (mTOR) kinase on a key residue, serine 326, essential for transcriptional activity. In this study, we found that mTOR knockdown not only decreased HSF1-S326 phosphorylation in mammary cells, but also decreased 帣-catenin expression through a mechanism requiring HuR. Our data point to a complex role for HSF1 in the regulation of HuR and 帣-catenin expression that may be significant in mammary carcinogenesis.
   

  Human miRNA OneArray  
 Scientific Reports. 2014 Oct 6;4:6527. doi: 10.1038/srep06527.
 Reduced miR-3127-5p expression promotes NSCLC proliferation/invasion and contributes to dasatinib sensitivity via the c-Abl/Ras/ERK pathway
 
 
 Bo Su, Wen Gao, Yifeng Sun, Chang Chen, Peng Zhang, Huikang Xie, Likun Hou, Zheng Hui, Yongjie Xu, Qiaoling Du, Xiao Zhou
  Abstract
miR-3127-5p is a primate-specific miRNA which is down-regulated in recurrent NSCLC tissue vs. matched primary tumor tissue (N = 15) and in tumor tissue vs. normal lung tissue (N = 177). Reduced miR-3127-5p expression is associated with a higher Ki-67 proliferation index and unfavorable prognosis in NSCLC. Overexpression of miR-3127-5p significantly reduced NSCLC cells proliferation, migration, and motility in vitro and in vivo. The oncogene ABL1 was a direct miR-3127-5p target, and miR-3127-5p regulated the activation of the Abl/Ras/ERK pathway and transactivated downstream proliferation/metastasis-associated molecules. Overexpression of miR-3127-5p in A549 or H292 cells resulted in enhanced resistance todasatinib, an Abl/src tyrosine kinase inhibitor. miR-3127-5p expression levels were correlated with dasatinib sensitivity in NSCLC cell lines without K-Ras G12 mutation. In conclusion, miR-3127-5p acts as a tumor suppressor gene and is a potential biomarker for dasatinib sensitivity in the non-mutated Ras subset of NSCLC.
   

  Human miRNA OneArray  
 Frontiers in Genetics. 2014, 5:246. doi: 10.3389/fgene.2014.00246.
 An investigation into anti-proliferative effects of microRNAs encoded by the miR-106a-363 cluster on human carcinoma cells and keratinocytes using microarray profiling of miRNA transcriptomes
 
 
 Cuong Khuu, Anne-MartheJevnaker, MagneBryne, HaraldOsmundsen
  Abstract
Transfection of human oral squamous carcinoma cells (clone E10) with mimics for unexpressed miR-20b or miR-363-5p, encoded by the miR-106a-363 cluster (miR-20b, miR-106a, miR-363-3p, or miR-363-5p), caused 40-50% decrease in proliferation. Transfection with mimics for miR-18a or miR-92a, encoded by the miR-17-92 cluster (all members being expressed in E10 cells), had no effect on proliferation. In contrast, mimic for the siblingmiRNA-19a yielded about 20% inhibition of proliferation. To investigate miRNA involvement profiling of miRNA transcriptomes were carried out using deoxyoligonucleotide microarrays. In transfectants for miR-19a, or miR-20b or miR-363-5p most differentially expressed miRNAs exhibited decreased expression, including some miRNAs encoded in paralogous miR-17-92-or miR-106b-25 cluster. Only in cells transfected with miR-19a mimic significantly increased expression of miR-20b observed-about 50-fold as judged by qRT-PCR. Further studies using qRT-PCR showed that transfection of E10 cells with mimic for miRNAs encoded by miR-17-92 - or miR-106a-363 - or the miR-106b-25 cluster confirmed selective effect on expression on sibling miRNAs. We conclude that high levels of miRNAs encoded by the miR-106a-363 cluster may contribute to inhibition of proliferation by decreasing expression of several sibling miRNAs encoded by miR-17-92 or by the miR-106b-25 cluster. The inhibition of proliferation observed in miR-19a-mimic transfectants is likely caused by the miR-19a-dependent increase in the levels of miR-20b and miR-106a. Bioinformatic analysis of differentially expressed miRNAs from miR-106a, miR-20b and miR-363-5p transfectants, but not miR-92a transfectants, yielded significant associations to "Cellular Growth and Proliferation" and "Cell Cycle." Western blotting results showed that levels of affected proteins to differ between transfectants, suggesting that different anti-proliferative mechanisms may operate in these transfectants.
   

  Mouse OneArray  
 Archives of Toxicology. 2014 Oct 2.
 Di-(2-ethylhexyl) phthalate accelerates atherosclerosis in apolipoprotein E-deficient mice
 
 
 Jin‑Feng Zhao, Sheng‑Huang Hsiao, Ming‑Hua Hsu, Kuan‑Chuan Pao, Yu Ru Kou, Song‑Kun Shyue, Tzong‑Shyuan Lee
  Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is associated with atherosclerosis-related cardiovascular disease complications, but we lack direct evidence of its unfavorable effect on atherogenesis. In this study, we aimed to clarify in vivo and in vitro the contribution of DEHP to the development ofatherosclerosis and its underlying mechanisms. Apolipoprotein E-deficient (apoE-/-) mice chronically treated with DEHP for 4 weeks showed exacerbated hyperlipidemia, systemic inflammation, and atherosclerosis. In addition, DEHP promoted low-density lipoprotein (LDL) oxidation, which led to inflammation in endothelial cells as evidenced by increased protein expression of pro-inflammatory mediators. Furthermore, chronic DEHP treatment increased hepatic cholesterol accumulation by downregulating the protein expression of key regulators in cholesterol clearance including LDL receptor, cholesterol 7帢-hydrolase, ATP-binding cassette transporter G5 and G8, and liver X receptor 帢. Moreover, the adiposity and inflammation of white adipose tissues were promoted in DEHP-treated apoE-/- mice. In conclusion, DEHP may disturb cholesterol homeostasis and deregulate the inflammatory response, thus leading to accelerated atherosclerosis.
   

  Human miRNA OneArray  
 Tumor Biology. 2014 Sep 18.
 miR-1285-3p acts as a potential tumor suppressor miRNA via downregulating JUN expression in hepatocellular carcinoma
 
 
 Jibing Liu, Jingchen Yan, Changchun Zhou, Qinghua Ma, Qingyan Jin, Zhenbin Yang
  Abstract
In the world, hepatocellular carcinoma (HCC) is one of the most common and most lethal cancers. Currently, standard therapy for unresectable HCC is a local-regional therapy with transarterial chemoembolisation (TACE). In this study, we sought to assess whether plasma circulating microRNAs (miRNAs) can be used to predict the prognosis of HCC patients receiving the TACE treatment. Firstly, we systematically examined TACE therapeutic effectiveness-related circulating miRNAs through miRNA Profiling Chips. As a result, we identified 19 circulating miRNAs to be significantly differentially expressed between the TACE-response group and the TACE-nonresponse group. In the second stage, we performed quantitative analyses of these candidate miRNAs in additional HCC patients treated with TACE and validated two of the aforementioned 19 miRNAs (miR-1285-3pand miR-4741) as candidate biomarkers for predicting prognosis of TACE. Interestingly, we found that miR-1285-3p could directly repress JUNoncogene expression in HCC cells, indicating miR-1285-3p could act as a potential tumor suppressor. In conclusion, our data indicate that circulatingmiR-1285-3p and miR-4741 was predictive of response to TACE therapy in HCC.
   

  Human OneArray  
 Tumor Biology. 2014 Jun 19.
 Diverse effect of WWOX overexpression in HT29 and SW480 colon cancer cell lines
 
 
 Karolina Pospiech, Urszula Lewandowska, Agnieszka W, Piastowska-Ciesielska, Andrzej Kazimierz Bednarek, Magdalena Nowakowska
  Abstract
WW-domain-containing oxidoreductase (WWOX) is the tumour suppressor gene from the common fragile site FRA16D, whose altered expression has been observed in tumours of various origins. Its suppressive role and influence on basic cellular processes such as proliferation and apoptosis have been confirmed in many in vitro and in vivo studies. Moreover, its protein is thought to take part in the regulation of tissue morphogenesis and cell differentiation. However, its role in colon cancer formation remains unclear. The aim of this study was to characterize the influence of WWOX on the process of colon cancerogenesis, the basic features of the cancer cell and its expression profiles. Multiple biological tests, microarray experiments and quantitative reverse transcriptase (RT)-PCR were performed on two colon cancer cell lines, HT29 and SW480, which differ in morphology, expression of differentiation markers, migratory characteristics and metastasis potential and which represent negative (HT29) and low (SW480) WWOX expression levels. The cell lines were subjected to retroviral transfection, inducting WWOX overexpression. WWOX was found to have diverse effects on proliferation, apoptosis and the adhesion potential of modified cell lines. Our observations suggest that in the HT29 colon cancer cell line, increased expression of WWOX may result in the transition of cancer cells into a more normal colon epithelium phenotype, while in SW480, WWOX demonstrated well-known tumour suppressor properties. Our results also suggest that WWOX does not behave as classical tumour suppressor gene, and its influence on cell functioning is more global and complicated.
   

  Mouse OneArray  
 Evidence-Based Complementary and Alternative Medicine. 2014 June 9.
 Electroacupuncture Improves Trinitrobenzene Sulfonic Acid-Induced Colitis, Evaluated by Transcriptomic Study
 
 
 Tin-Yun Ho, Hsin-Yi Lo, De-Cheng Chao, Chia-Cheng Li, Jau-Jin Liu, Chingju Lin, Chien-Yun Hsiang
  Abstract
Inflammatory bowel disease is a chronic colonic inflammation that displays symptoms like diarrhea and weight loss. Acupuncture has been widely accepted by Western countries for the treatment of pain. Here, we analyzed efficacy and mechanism of electroacupuncture (EA) on trinitrobenzene sulfonic acid- (TNBS-) induced colitis in mice. Mice were intrarectally administered with 250 mg/kg TNBS and electroacupunctured at Quze (PC3) and Neiguan (PC6) acupoints, which have been applied for gastrointestinal disorders. Gene expression profiles in colons and spleens were analyzed by microarray for the elucidation of mechanism of EA. Our data showed that EA at PC3 and PC6 improved macroscopic and microscopic features of colitis and the improvement displayed a frequency-dependent manner. Administration of TNBS upregulated the expression of most cytokine genes in colons, while EA downregulated the expression of TNBS-induced cytokine genes. Pathway analysis showed that EA significantly affected inflammatory pathways in colons and immunity-associated pathway in spleens. Immunohistochemical staining further showed that EA decreased the expression of interleukin-1帣 and nuclear factor-庥B. In conclusion, this is the first study reporting the global gene expression profiles of EA on TNBS-induced colitis. Our findings suggested that inflammatory and immunity pathways were involved in the anti-inflammatory mechanism of EA on colitis induced by TNBS.
   

  Human OneArray  
 Leukemia. 2014 Apr 15. doi: 10.1038/leu.2014.135.
 piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma
 
 
 H Yan, Q-L Wu, C-Y Sun, L-S Ai, J Deng, L Zhang, L Chen, Z-B Chu, B Tang, K Wang, X-F Wu, J Xu, Y Hu
  Abstract
Aberrant DNA hypermethylation contributes to myelomagenesis by silencing tumor-suppressor genes. Recently, a few reports have suggested that a novel class of small non-coding RNAs, called Piwi-interacting RNAs (piRNAs), may be involved in the epigenetic regulation of cancer. In this study, for the first time we provided evidence that the expression of piRNA-823 was upregulated in multiple myeloma (MM) patients and cell lines, and positively correlated with clinical stage. Silencing piRNA-823 in MM cells induced deregulation of cell cycle regulators and apoptosis-related proteins expression, accompanied by inhibition of tumorigenicity in vitro and in vivo. Moreover, piRNA-823 was directly relevant to de novo DNAmethyltransferases, DNMT3A and 3B, in primary CD138+ MM cells. The inhibited expression of piRNA-823 in MM cells resulted in marked reduction of DNMT3A and 3B at both mRNA and protein levels, which in turn led to decrease in global DNA methylation and reexpression of methylation-silenced tumor suppressor, p16INK4A. In addition, piRNA-823 abrogation in MM cells induced reduction of vascular endothelial growth factor secretion, with consequent decreased proangiogenic activity. Altogether, these data support an oncogenic role of piRNA-823 in the biology of MM, providing a rational for the development of piRNA-targeted therapeutic strategies in MM.
   

  Human OneArray  
 Nanomedicine. 2014 Feb 22. doi: 10.1016/j.nano.2014.02.006.
 A steroid-mimicking nanomaterial that mediates inhibition of human lung mast cell responses
 
 
 Anthony L. Dellinger, Zhiguo Zhou, Christopher L. Kepley
  Abstract
Water-soluble fullerenes can be engineered to regulate activation of mast cells (MC) and control MC-driven diseases in vivo. To further understand their anti-inflammatory mechanisms a C70-based fullerene conjugated to four myo-inositol molecules (C70-I) was examined in vitro for its effects on the signaling pathways leading to mediator release from human lung MC. The C70-I fullerene stabilizes MC and acts synergistically with long-acting 帣2-adrenergic receptor agonists (LABA) to enhance inhibition of MC mediator release through Fc庰RI-simulation. The inhibition was paralleled by the upregulation of dual-specificity phosphatase one (DUSP1) gene and protein levels. Concomitantly, increases in MAPK were blunted in C70-I treated cells. The increase in DUSP1 expression was due to the ability of C70-I to prevent the ubiquitination and degradation of DUSP1. These findings identify a mechanism of how fullerenes inhibit inflammatory mediator release from MC and suggest they could potentially be an alternative therapy for steroid resistant asthmatics.
   

  Human OneArray  
 Biochemical Journal. 2014 Mar 4.
 Calreticulin activates 帣1-integrin through fucosylation modification by fucosyltransferase-1 in J82 human bladder cancer cells
 
 
 Yi-Chien Lu, Chiung-Nien Chen, Chia-Ying Chu, JenHer Lu, Bo-Jeng Wang, Chia-Hua Chen, Min-Chuan Huang, Tsui-Hwa Lin, Chin-Chen Pan, Swey-Shen Alex Chen, Wen-Ming Hsu, Yung-Feng Liao, Pei-Yi Wu, Hsin-Yi Hsia, Cheng-Chi Chang, Hsinyu Lee
  Abstract
Fucosylation regulates various pathological events in cells. We previously reported that different levels of calreticulin (CRT) affect cell adhesion and metastasis of bladder cancer. However, the precise mechanism of tumor metastasis regulated by CRT remains unclear. Using DNA array, we identifiedfucosyltransferase-1 (FUT1) as a gene regulated by CRT expression levels. CRT regulated cell adhesion through 帢1,2-linked fucosylation on 帣1-integrin and this modification was catalyzed by FUT1. To clarify FUT1 roles in bladder cancer, we transfected the human FUT1 gene into CRT-RNAi stable cell lines. FUT1 overexpression in CRT-RNAi cells resulted in increased levels of 帣1-integrin fucosylation and rescued cell adhesion to type-I collagen. Treatment with Ulex europaeus agglutinin I (UEA-1), a lectin recognizes FUT1-modified glycosylation structures, did not affect cell adhesion. In contrast, a FUT1-specific fucosidase diminished the activation of 帣1-integrin. These results indicated that 帢1,2-fucosylation on 帣1-integrin were not involved in the integrin-collagen interaction but promoted 帣1-integrin activation. Moreover, we demonstrated that CRT regulated FUT1 mRNA degradation in 3'-untranslated region (3'-UTR). In conclusion, our findings suggested that CRT stabilized FUT1 mRNA, thereby leading to increase in fucosylation of 帣1-integrin. Furthermore, increasedfucosylation levels activate 帣1-integrin rather than directly modifying the integrin binding sites.
   

  Human miRNA OneArray  
 International Journal of Molecular Medicine. 2013, 32(3):557-67. doi: 10.3892/ijmm.2013.1424.
 Serum microRNA expression levels can predict lymph node metastasis in patients with early-stage cervical squamous cell carcinoma
 
 
 DESHENG YAO, JUNYING CHEN, YUE LI, HONG CHEN, CHANJUAN HE, NAN DING, YAN LU, TINGYU OU, SHAN ZHAO, LI LI, FENGYI LONG
  Abstract
Circulating microRNA expression levels can serve as diagnostic/prognostic biomarkers in several types of malignant tumors; however, to our knowledge, there have been reports describing their value in cervical squamous cell carcinoma (SCC). In this study, we used hybridization arrays to compare the microRNA expression profiles in cervical squamous cell carcinomas (SCC) samples among patients with lymph node metastasis (LNM) or without LNM; 89 microRNAs were found to fit our inclusion criteria. Using quantitative PCR (qPCR), we examined the expression levels of these microRNAs in cervical cancer tissue, as well as in serum from patients and healthy women. We compared the expression levels between patients with LNM (n=40) and those without LNM (n=40) and healthy controls (n=20). Using regression analysis, we generated a comprehensive set of marker microRNAs and drew the fitted binormal receiver operating characteristic (ROC) curves to access the predictive value. We identified 6 serum microRNAs that can predict LNM in cervical SCC patients; these microRNAs were miR-1246, miR-20a, miR-2392, miR-3147, miR-3162-5p and miR-4484. The area under the curve (AUC) of the comprehensive set of serum microRNAs predicting LNM was 0.932 (sensitivity, 0.856; specificity, 0.850). The predictive value of the serum microRNAs was inferior to that in tissue (AUC 0.992; sensitivity, 0.967; specificity, 0.950; P=0.018). We compared the LNM predictive value of serum microRNAs and SCC antigen (SCC-Ag) by drawing fitted binormal ROC curves However, serum microRNA analysis is by far superior to serum SCC‑Ag analysis (AUC 0.713; sensitivity, 0.612; specificity, 0.700; P<0.0001). Serum microRNAs are a good predictor of LNM with clinical value in early-stage cervical SCC.
   

  Human OneArray  
 Cell Death & Disease. 2013, 4:e883. doi: 10.1038/cddis.2013.419.
 Implication of transcriptional repression in compound C-induced apoptosis in cancer cells
 
 
 Dai RY, Zhao XF, Li JJ, Chen R, Luo ZL, Yu LX, Chen SK, Zhang CY, Duan CY, Liu YP, Feng CH, Xia XM, Li H, HY Wang, J Fu
  Abstract
Compound C, a well-known inhibitor of AMP-activated protein kinase (AMPK), has been reported to induce apoptosis in some types of cells. However, the underlying mechanisms remain largely unclear. Using a DNA microarray analysis, we found that the expression of many genes was downregulated upon treatment with compound C. Importantly, compound C caused transcriptional repression with the induction of p53, a well-known marker of transcriptional stress response, in several cancer cell lines. Compound C did not induce the phosphorylation of p53 but dramatically increased the protein level of p53 similar to some other transcriptional inhibitors, including 5,6-dichloro-1-帣-D-ribobenzimidazole (DRB). Consistent with previous reports, we found that compound C initiated apoptotic death of cancer cells in an AMPK-independent manner. Similar to DRB and actinomycin D (ActD), two classic transcription inhibitors, compound C not only resulted in the loss of Bcl-2 and Bcl-xl protein but also induced the phosphorylation of eukaryotic initiation factor-alpha (eIF2帢) on Ser51. Hence, the phosphorylation of eIF2帢 might be a novel marker of transcriptional inhibition. It is noteworthy that compound C-mediated apoptosis of cancer cells is correlated with decreased expression of Bcl-2 and Bcl-xl and the phosphorylation of eIF2帢 on Ser51. Remarkably, compound C exhibits potent anticancer activities in vivo. Taken together, our data suggest that compound C may be an attractive candidate for anticancer drug development.
   

  Human OneArray  
 Molecular Cancer. 2013, 12(1):129. doi:10.1186/1476-4598-12-129.
 Small molecule antagonist of the bone morphogenetic protein type I receptors suppresses growth and expression of Id1 and Id3 in lung cancer cells expressing Oct4 or nestin
 
 
 Langenfeld E, Deen M, Zachariah E, John Langenfeld
  Abstract
BACKGROUND: Bone morphogenetic proteins (BMP) are embryonic morphogens that are aberrantly expressed in lung cancer. BMPs mediate cell fate decisions and self-renewal of stem cells, through transcription regulation of inhibitor of differentiation protein/DNA binding proteins (Id1-3). Inhibition of BMP signaling decreases growth and induces cell death of lung cancer cells lines by downregulating the expression of Id proteins. It is not known whether the BMP signaling cascade regulates growth and the expression of Id proteins of lung cancer cells expressing the stem cell markers Oct4 and/or nestin. RESULTS: Our studies suggest that lung cancer cells expressing Oct4 or nestin are different cell populations. Microarray and quantitative RT-PCR demonstrated that the expression of specific stem cell markers were different between isolated Oct4 and nestin cells. Both the Oct4 and nestin populations were more tumorigenic than controls but histologically they were quite different. The isolated Oct4 and nestin cells also responded differently to inhibition of BMP signaling. Blockade of BMP signaling with the BMP receptor antagonist DMH2 caused significant growth inhibition of both the Oct4 and nestin cell populations but only increased cell death in the nestin population. DMH2 also induced the expression of nestin in the Oct4 population but not in the nestin cells. We also show that BMP signaling is an important regulator of Id1 and Id3 in both the Oct4 and nestin cell populations. Furthermore, we show that NeuN is frequently expressed in NSCLC and provide evidence suggesting that Oct4 cells give rise to cancer cells expressing nestin and/or NeuN. CONCLUSION: These studies show that although biologically different, BMP signaling is growth promoting in cancer cells expressing Oct4 or nestin. Inhibition of BMP signaling decreases expression of Id proteins and suppresses growth of cancer cells expressing Oct4 or Nestin. Small molecule antagonists of the BMP type I receptors represent potential novel drugs to target the population of cancer cells expressing stem cell markers.
   

  Human OneArray  
 Human & Experimental Toxicology. 2013 Sep 24. doi: 10.1177/0960327113485257.
 Molecular characterization of photosensitizer-mediated photodynamic therapy by gene expression profiling
 
 
 Liu KH, Wang CP, Chang MF, Chung YW, Lou PJ, Lin JH
  Abstract
Photodynamic therapy (PDT) is a novel cancer treatment based on the tumor-specific accumulation of a photosensitizer followed by irradiation with visible light, which induces selective tumor cell death via production of reactive oxygen species. To elucidate the underlying mechanisms, microarray analysis was used to analyze the changes in gene expression patterns during PDT induced by various photosensitizers. Cancer cells were subjected to four different photosensitizer-mediated PDT and the resulting gene expression profiles were compared. We identified many differentially expressed genes reported previously as well as new genes for which the functionfunctions in PDT are still unclear. Our current results not only advance the general understanding of PDT but also suggest that distinct molecular mechanisms are involved in different photosensitizer-mediated PDT. Elucidating the signaling mechanisms in PDT will provide information to modulate the antitumor effectiveness of PDT using various photosensitizers.
   

  Human OneArray  
 Surgery. 2013, 154(4):739-47. doi: 10.1016/j.surg.2013.06.041.
 EZH2-shRNA-mediated upregulation of p21(waf1/cip1) and its transcriptional enhancers with concomitant downmodulation of mutant p53 in pancreatic ductal denocarcinoma
 
 
 Qazi AM, Gruzdyn OV, Semaan A, Seward SM, Chamala S, Dhulipala VB, Bouwman DL, Weaver DW, Gruber SA, Batchu RB
  Abstract
PURPOSE: Enhancer of zeste homologue 2 (EZH2), a component of the chromatin modification protein complex, is upregulated in pancreatic ductaladenocarcinoma (PDAC), whereas loss of p53 and its downstream target, p21(waf1/cip1), is also observed frequently. We sought to investigate the role of the p53-p21(waf1/cip1) pathway in relation to EZH2-mediated inhibition of PDAC. METHODS: The PANC-1 cell line was utilized in chromatin immunoprecipitation, gene profiling, Western blot, cell invasion, cell proliferation, and tumor xenograft assays. RESULTS: Western blot analysis with antibodies that recognize both wild-type and mutant p53 did not show any alterations in band intensity; however, antibody that detects only mutant p53 showed a band of significantly lesser intensity with EZH2 knockdown. Western blot analysis further revealed a significant upregulation of p21(waf1/cip1). Gene expression profile analysis indicated significantly enhanced transcripts of transcriptionalinducers of p21(waf1/cip1), with downregulation of mutant p53 transcript, corroborating the Western blot analysis. PANC-1 cells expressing EZH2-short hairpin RNA displayed markedly attenuated growth in SCID mice. CONCLUSION: Downregulation of mutant p53 with concomitant enhanced expression of p21(waf1/cip1) and its transcriptional trans-activators may contribute toward EZH2-mediated suppression of PDAC.
   

  Human OneArray  
 International Journal of Cancer. 2013 Aug 12. doi: 10.1002/ijc.28428.
 Gene expression profile of A549 cells from tissue of 4D model predicts poor prognosis in lung cancer patients
 
 
 Dhruva K. Mishra, Chad J. Creighton, Yiqun Zhang, Don L. Gibbons, Jonathan M. Kurie, Min P. Kim
  Abstract
The tumor microenvironment plays an important role in regulating cell growth and metastasis. Recently, we developed an ex vivo lung cancer model (four dimensional, 4D) that forms perfusable tumor nodules on a lung matrix that mimics human lung cancer histopathology and protease secretion pattern. We compared the gene expression profile (Human OneArray v5 chip) of A549 cells, a human lung cancer cell line, grown in a petri dish (two-dimensional, 2D), and of the same cells grown in the matrix of our ex vivo model (4D). Furthermore, we obtained gene expression data of A549 cells grown in a petri dish (2D) and matrigel (three-dimensional, 3D) from a previous study and compared the 3D expression profile with that of 4D. Expression array analysis showed 2,954 genes differentially expressed between 2D and 4D. Gene ontology (GO) analysis showed upregulation of several genes associated with extracellular matrix, polarity and cell fate and development. Moreover, expression array analysis of 2D vs. 3D showed 1,006 genes that were most differentially expressed, with only 36 genes (4%) having similar expression patterns as observed between 2D and 4D. Finally, the differential gene expression signature of 4D cells (vs. 2D) correlated significantly with poor survival in patients with lung cancer (n 5 1,492), while the expression signature of 3D vs. 2D correlated with better survival in lung cancer patients with lung cancer. As patients with larger tumors have a worse rate of survival, the ex vivo 4D model may be a good mimic of natural progression of tumor growth in lung cancer patients.
   

  Human OneArray  
 Cancer Research. 2013 June 2. doi: 10.1158/0008-5472.
 A sequence polymorphism in miRNA-608 predicts recurrence after radiotherapy of nasopharyngeal carcinoma
 
 
 Jian Zheng, Jieqiong Deng, Mang Xiao, Lei Yang, Liyuan Zhang, Yonghe You, Min Hu, Na Li, Hongchun Wu, Wei Li, Jiachun Lu, Yifeng Zhou
  Abstract
Nasopharyngeal carcinoma (NPC) is treated with radiotherapy and other modalities, but there is little information on individual genetic factors to help predict and improve patient outcomes. Single nucleotide polymorphisms (SNPs) in mature microRNA (miRNA) sequences have the potential to exert broad impact since miRNAs target many mRNAs. The aim of this study was to evaluate the effects of SNPs in mature miRNA sequences on clinical outcome in NPC patients receiving radiotherapy. In particular, we analyzed associations between seven SNPs and NPC locoregional recurrence (LRR) in 837 patients from eastern China, validating the findings in an additional 828 patients from southern China. We found that miRNA-608 rs4919510C>G exhibited a consistent association with LRR in the discovery set (hazard ratio [HR]=2.05; 95% confidence interval [CI]=1.35-3.21), the validation set (HR=2.24; 95%CI=1.45-3.38), and the combined data set (HR=2.08; 95%CI=1.41-3.26). Biochemical investigations demonstrated that rs4919510C>G affects expression of miRNA-608 target genes along with NPC cell growth after irradiation in vivo and in vitro. Notably, X-ray radiation induced more chromatid breaks in lymphocyte cells from rs4919510CC carriers than in those from subjects with other genotypes (P=0.0024). Our findings reveal rs4919510C>G in miRNA-608 as a simple marker to predict locoregional recurrence in radiotherapy-treated NPC patients.
   

  Human OneArray  
 Carcinogenesis. 2013 May 13..
 MiR-146a enhances angiogenic activity of endothelial cells in hepatocellular carcinoma by promoting PDGFRA expression
 
 
 Zhu K, Pan Q, Zhang X, Kong LQ, Fan J, Dai Z, Wang L, Yang XR, Hu J, Wan JL, Zhao YM, Tao ZH, Chai ZT, Zeng HY, Tang ZY, Zhou J, Hui-Chuan Sun
  Abstract
Endothelial cells are critical for angiogenesis, and microRNA play important roles in this process. We investigated the regulatory role of microRNAs in endothelial cells of hepatocellular carcinoma (HCC) by examining the microRNA expression profile of human umbilical vein endothelial cells (HUVECs) in the absence or presence of human HCC cells, and identified miR-146a as the most highly up-regulated microRNA. Furthermore, we revealed that miR-146a promoted the expression of platelet-derived growth factor receptor 帢 (PDGFRA) in HUVECs, and this process was mediated by BRCA1. Overexpression of PDGFRA in the ECs of HCC tissues was associated with microvascular invasion, and predicted a poorer prognosis. These results suggest that MiR-146a plays a key role in regulating the angiogenic activity of ECs in HCC through miR-146a-BRCA1-PDGFRA pathway. MiR-146a may emerge as a potential anti-angiogenic target on ECs for HCC therapy.
   

  Human OneArray  
 The American Journal of Pathology. 2013 April 8. doi: 10.1016/j.ajpath.2013.04.022.
 Activated PAR-2 Regulates Pancreatic Cancer Progression through ILK/HIF-aeInduced TGF-a Expression and MEK/VEGF-AeMediated Angiogenesis
 
 
 Li-Hsun Chang, Shiow-Lin Pan, Chin-Yu Lai, An-Chi Tsai, Che-Ming Teng
  Abstract
Tissue factor initiates the process of thrombosis and activates cell signaling through protease-activated receptor-2 (PAR-2). The aim of this study was to investigate the pathological role of PAR-2 signaling in pancreatic cancer. We first demonstrated that activated PAR-2 up-regulated the protein expression of both hypoxia-inducible factor-1a (HIF-1a) and HIF-2a, resulting in enhanced transcription of transforming growth factor-a (TGF-a). Down-regulation of HIFs-a by siRNA or YC-1, an HIF inhibitor, resulted in depleted levels of TGF-a protein. Furthermore, PAR-2, through integrin-linked kinase (ILK) signaling, including the p-AKT, promoted HIF protein expression. Diminishing ILK by siRNA decreased the levels of PAR-2einduced p-AKT, HIFs-a, and TGF-a; our results suggest that ILK is involved in the PAR-2e mediated TGF-a via an HIF-aedependent pathway. Furthermore, the culture medium from PAR-2e treated pancreatic cancer cells enhanced human umbilical vein endothelial cell proliferation and tube formation, which was blocked by the MEK inhibitor, PD98059. We also found that activated PAR-2 Q4 enhanced tumor angiogenesis through the release of vascular endothelial growth factor-A (VEGF-A) from cancer cells, independent of the ILK/HIFs-a pathways. Consistent with microarray analysis, activated PAR-2 induced TGF-A and VEGF-A gene expression. In conclusion, the activation of PAR-2 signaling induced human pancreatic cancer progression through the induction of TGF-a expression by ILK/HIFs-a, as well as through MEK/VEGF-Aemediated angiogenesis, and it plays a role in the interaction between cancer progression and cancer-related thrombosis.
   

  Human OneArray  
 Oncology Letters . 2013 May 23. doi:10.3892/ol.2013.1380.
 A potential diagnostic marker for ovarian cancer: Involvement of the histone acetyltransferase, human males absent on the first
 
 
 NING LIU, RUI ZHANG, XIAOMING ZHAO, JIAMING SU, XIAOLEI BIAN, JINSONG NI, YONG CAI, YING YUE, JINGJI JIN
  Abstract
Human males absent on the first (hMOF), a human ortholog of the Drosophila MOF protein, is responsible for histone H4 lysine 16 (H4K16) acetylation in human cells. The depletion of hMOF leads to a global reduction in histone H4K16 acetylation in human cells, genomic instability, cell cycle defects, reduced transcription of certain genes, defective DNA damage repair and early embryonic lethality. Studies have shown that abnormal hMOF gene expression is involved in a number of primary cancers. The present study examined the involvement of hMOF expression and histone H4K16 acetylation in clinically diagnosed primary ovarian cancer tissues. Clinically diagnosed frozen primary ovarian cancer tissues were used for polymerase chain reaction (PCR), quantitative PCR (qPCR), western blotting and immunohistochemical staining approaches. A PCR analysis of mRNA expression in 47 samples revealed a downregulation of hMOF mRNA in 81% of patients, whereas only 13% of patients demonstrated upregulation. qPCR was used to validate the frequent downregulation of hMOF expression in the primary ovarian cancer tissues. As expected, the analysis of hMOF expression in 57 samples revealed that hMOF mRNA expression was significantly downregulated (>2‑fold decrease) in 65% of patients, while a <2‑fold reduction of hMOF was observed in 10.5% of patients. Furthermore, the expression of hMOF‑regulated human leukocyte antigen (HLA) complex 5, (HCP5), was also found to be downregulated in >87% of patients with a decrease in hMOF. hMOF and its regulated gene, HCP5, are frequently downregulated in human ovarian cancer, suggesting that hMOF may be involved in the pathogenesis of the disease.
   

  Human miRNA OneArray  
 Liver International. 2013 Apr 14.
 MicroRNA-491 is Involved in Metastasis of Hepatocellular Carcinoma by Inhibitions of Matrix Metalloproteinase and Epithelial to Mesenchymal Transition
 
 
 Yun Zhou, Yuan Li, Jing Ye, Rongrong Jiang, Han Yan, Xiaojun Yang, Qizhan Liu b, Jianping Zhang
  Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. The prognosis of HCC patient remains poor due to intrahepatic and extrahepatic metastasis and post-surgical recurrence, however, the mechanisms underlying metastasis and recurrence remain obscure. Here, by employing an miRNAs microarray analysis, we found that miR-491 level was one of the most significant down-regulation in poorly differentiated HCC tissue compared to well differentiated HCC tissue. We then selected HepG2 (very low migratory capacity), MHCC97L (low migratory capacity), and MHCC97H (high migratory capacity) as well as HCC tissues with different status to further investigate the effects of miR-491 on the metastasis of HCC. Our data showed that miR-491 levels were inversely correlated with different status of differentiation in HCC tissues and with migratory potential in HCC cell lines. In HepG2 cells, inhibition of miR-491 increased the expression of matrix metalloproteinase 2/9 (MMP-2/9) and the migratory potential; however, in MHCC97H cells, overexpression of miR-491 level decreased the expression of MMP-2/9 and the migratory capacity. Moreover, miR-491 had a positive relationship with E-cadherin level; however, it had a negative relationship with vimentin level both in cell lines and tissue samples of HCC. MiR-491 levels of non-metastasis HCC tissue are higher than that of metastasis HCC tissue. Our results suggest that miR-491 is involved in metastasis of HCC by blocking EMT and decreasing MMP-9 levels, which may provide a new clue for preventing tumor metastasis of HCC.
   

  Human miRNA OneArray  
 Cancer Research. 2013 May 1.
 miR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma
 
 
 Jun Wei, Fei Wang, Ling-Yuan Kong, Shuo Xu, Tiffany Doucette, Sherise D. Ferguson, Yuhui Yang, Kayla McEnery, Krishan Jethwa, Olsi Gjyshi, Wei Qiao, Nicholas B. Levine, Frederick F. Lang, Ganesh Rao, Gregory N. Fuller, George A. Calin, Amy B. Heimberger
  Abstract
MicroRNAs (miRs) have been shown to modulate critical gene transcripts involved in tumorigenesis, but their role in tumor-mediated immune suppression is largely unknown. On the basis of miRNA gene expression in gliomas using tissue microarrays, in situ hybridization, and molecular modeling, miR-124 was identified as a lead candidate for modulating signal transducer and activator of transcription 3 (STAT3) signaling, a key pathway mediating immune suppression in the tumor microenvironment. miR-124 is absent in all grades and pathological types of gliomas. Upon up regulating miR-124 in glioma cancer stem cells (gCSCs), the STAT3 pathway was inhibited, and miR-124 reversed gCSC-mediated immune suppression of T-cell proliferation and induction of Foxp3+ regulatory T-cells (Tregs). Treatment of T-cells from immunosuppressed glioblastoma patients with miR-124 induced marked effector response including up regulation of IL-2, IFN-帠, and tumor necrosis factor (TNF)-帢. Both systemic administration of miR-124 or adoptive miR-124-transfected T-cell transfers exerted potent antiglioma therapeutic effects in clonotypic and genetically engineered murine models of glioblastoma and enhanced effector responses in the local tumor microenvironment. These therapeutic effects were ablated in both CD4+ and CD8+ depleted mice and nude mouse systems, indicating that the therapeutic effect of miR-124 depends on the presence of a T-cellmediated antitumor immune response. Our findings highlight the potential application of miR- 124 as a novel immunotherapeutic agent for neoplasms and serve as a model for identifying miRNAs that can be exploited as immune therapeutics.
   

  Human OneArray  
 Carcinogenesis. 2013 Apr 30.
 Depletion of 4E-BP1 and regulation of autophagy lead to YXM110-induced anti-cancer effects
 
 
 Chin-Yu Lai, Shiow-Lin Pan, Xiao-Ming Yang, Li-Hsun Chang, Ya-Ling Chang, Pan-Chyr Yang, Kuo-Hsiung Lee, Che-Ming Teng
  Abstract
Natural products have always been a profuse database for developing new chemotherapeutics. YXM110 is a newly synthesized phenanthroquinolizidines that exhibits excellent anti-cancer activity in numerous cancer cells. Here, we examined the anti-cancer mechanisms of YXM110 both in vitro and in vivo. Protein level of 4E-binding protein 1 (4E-BP1), which is crucial in cap-independent translation, was decreased significantly after YXM110 treatment via c-Jun N-terminal kinases (JNK)-mediated proteasomal degradation. Moreover, the effects of YXM110 were associated with several characteristics of autophagy, including accumulation of autophagic vacuoles, elevation of Atg12-Atg5 and LC3-II, and levels of GFP-LC3 puncta. The results suggested that depletion of Mcl-1 contributes to YXM110-triggered autophagy, whereas downregulation of lysosomal-related genes could cause autophagy impairment. Furthermore, YXM110-induced cell death were prevented by autophagy inhibitor 3-methyladenine (3-MA) and Atg5 silencing, indicating that YXM110-mediated autophagy impairment lead to cancer cell death. These data reveal key mechanisms that support the further development of YXM110 as a promising anti-cancer agent.
   

  Human OneArray  
 Cell Cycle. 2013, 12(10): 1510-1520. doi: 10.4161/cc.24497.
 Caveolin-1 is a negative regulator of tumor growth in glioblastoma and modulates chemosensitivity to temozolomide
 
 
 Kevin Quann, Donna M. Gonzales, Isabelle Mercier, Chenguang Wang, Federica Sotgia, Richard G. Pestell, Michael P. Lisanti, Jean-François Jasmin
  Abstract
Caveolin-1 (Cav-1) is a critical regulator of tumor progression in a variety of cancers where it has been shown to act as either a tumor suppressor or tumor promoter. In glioblastoma multiforme, it has been previously demonstrated to function as a putative tumor suppressor. Our studies here, using the human glioblastoma-derived cell line U-87MG, further support the role of Cav-1 as a negative regulator of tumor growth. Using a lentiviral transduction approach, we were able to stably overexpress Cav-1 in U-87MG cells. Gene expression microarray analyses demonstrated significant enrichment in gene signatures corresponding to downregulation of MAPK, PI3K/AKT and mTO R signaling, as well as activation of apoptotic pathways in Cav-1-overexpressing U-87MG cells. These same gene signatures were later confirmed at the protein level in vitro. To explore the ability of Cav-1 to regulate tumor growth in vivo, we further show that Cav-1-overexpressing U-87MG cells display reduced tumorigenicity in an ectopic xenograft mouse model, with marked hypoactivation of MAPK and PI3K/mTO R pathways. Finally, we demonstrate that Cav-1 overexpression confers sensitivity to the most commonly used chemotherapy for glioblastoma, temozolomide. In conclusion, Cav-1 negatively regulates key cell growth and survival pathways and may be an effective biomarker for predicting response to chemotherapy in glioblastoma.
   

  Human OneArray  
 Cancer Letters. 2013 Apr 18. doi: 10.1016/j.canlet.2013.04.012.
 EZH2 blockade by RNA interference inhibits growth of ovarian cancer by facilitating re-expression of p21waf1/cip1 and by inhibiting mutant p53
 
 
 Seward S, Semaan A, Qazi AM, Gruzdyn OV, Chamala S, Bryant CC, Kumar S, Cameron D, Sethi S, Ali-Fehmi R, Morris R, Bouwman DL, Munkarah AR, Weaver DW, Gruber SA, Batchu RB
  Abstract
The enhancer of zeste homolog 2 (EZH2) methyltransferase, which plays a key role in transcriptional gene repression, is abnormally elevated in epithelial ovarian cancer (EOC) patients and positively correlated with increasing stage of disease. We demonstrated that EZH2 depletion by RNA interference efficiently inhibited cell proliferation, colony formation, cell invasion, activated the apoptotic pathway, and enhanced chemosensitivity. Silencing of EZH2 resulted in re-expression of p21waf1/cip1 on chromatin immunoprecipitation assay and concomitant down-regulation of trimethylated H3K27 and mutant p53 protein, contributing to attenuated EOC growth in SCID mice. Our findings suggest that EZH2-shRNA holds promise as a potential therapeutic modality for EOC.
   

  Human miRNA OneArray  
 PLoS One. 2013, 8(3): e58929. doi:10.1371/journal.pone.0058929.
 Genistein Up-Regulates Tumor Suppressor MicroRNA-574-3p in Prostate Cancer
 
 
 Takeshi Chiyomaru, Soichiro Yamamura, Shinichiro Fukuhara, Hideo Hidaka, Shahana Majid, Sharanjot Saini, Sumit Arora, Guoren Deng, Varahram Shahryari, Inik Chang, Yuichiro Tanaka, Z., Rajvir Dahiya
  Abstract
Genistein has been shown to inhibit cancers both in vitro and in vivo, by altering the expression of several microRNAs (miRNAs). In this study, we focused on tumor suppressor miRNAs regulated by genistein and investigated their function in prostate cancer (PCa) and target pathways. Using miRNA microarray analysis and real-time RT-PCR we observed that miR- 574-3p was significantly up-regulated in PCa cells treated with genistein compared with vehicle control. The expression of miR-574-3p was significantly lower in PCa cell lines and clinical PCa tissues compared with normal prostate cells (RWPE-1) and adjacent normal tissues. Low expression level of miR-574-3p was correlated with advanced tumor stage and higher Gleason score in PCa specimens. Re-expression of miR-574-3p in PCa cells significantly inhibited cell proliferation, migration and invasion in vitro and in vivo. miR-574-3p restoration induced apoptosis through reducing Bcl-xL and activating caspase- 9 and caspase-3. Using GeneCodis software analysis, several pathways affected by miR-574-3p were identified, such as Pathways in cancer, Jak-STAT signaling pathway, and Wnt signaling pathway. Luciferase reporter assays demonstrated that miR-574-3p directly binds to the 39 UTR of several target genes (such as RAC1, EGFR and EP300) that are components of Pathways in cancer. Quantitative real-time PCR and Western analysis showed that the mRNA and protein expression levels of the three target genes in PCa cells were markedly down-regulated with miR-574-3p. Loss-of-function studies demonstrated that the three target genes significantly affect cell proliferation, migration and invasion in PCa cell lines. Our results show that genistein up-regulates tumor suppressor miR-574-3p expression targeting several cell signaling pathways. These findings enhance understanding of how genistein regulates with miRNA in Pca.
   

  Human OneArray  
 Cell Cycle. 2013, 12(6):987-99. .
 Tumor-suppressive effects of CDK8 in endometrial cancer cells
 
 
 Weiting Gu,Chenguang Wang, Weihua Li, Fu-Ning Hsu, Lifeng Tian, Jie Zhou, Cunzhong Yuan, Xiao-Jun Xie, Tao Jiang, Sankar Addya, Yanhong Tai, Beihua Kong, Jun-Yuan Ji
  Abstract
CDK8 is either amplified or mutated in a variety of human cancers, and CDK8 functions as an oncoprotein in melanoma and colorectal cancers. Previously, we reported that loss or reduction of CDK8 results in aberrant fat accumulation in Drosophila and mammals, suggesting that CDK8 plays an important role in inhibiting lipogenesis. Epidemiological studies have identified obesity and overweight as the major risk factors of endometrial cancer, thus we examined whether CDK8 regulates endometrial cancer cell growth by using several endometrial cancer cell lines, including KLE, which express low levels of CDK8, as well as AN3 CA and HEC-1A cells, which have high levels of endogenous CDK8. We observed that ectopic expression of CDK8 in KLE cells inhibited cell proliferation and potently blocked tumor growth in an in vivo mouse model. In addition, gain of CDK8 in KLE cells blocked cell migration and invasion in transwell, wound healing and persistence of migratory directionality assays. Conversely, we observed the opposite effects in all of the aforementioned assays when CDK8 was depleted in AN3 CA cells. Similar to AN3 CA cells, depletion of CDK8 in HEC-1A cells strongly enhanced cell migration in transwell assays, while overexpression of CDK8 in HEC-1A cells blocked cell migration. Furthermore, gene profiling of KLE cells overexpressing CDK8 revealed genes whose protein products are involved in lipid metabolism, cell cycle and cell movement pathways. Finally, depletion of CDK8 increased the expression of lipogenic genes in endometrial cancer cells. Taken together, these results show a reverse correlation between CDK8 levels and several key features of the endometrial cancer cells, including cell proliferation, migration and invasion as well as tumor formation in vivo. Therefore, in contrast to the oncogenic effects of CDK8 in melanoma and colorectal cancers, our results suggest that CDK8 plays a tumor-suppressive role in endometrial cancers.
   

  Human OneArray  
 PLoS One. 2013, 8(2):e54455. doi: 10.1371/journal.pone.0054455.
 MUC4 Overexpression Augments Cell Migration and Metastasis through EGFR Family Proteins in Triple Negative Breast Cancer Cells
 
 
 Partha Mukhopadhyay, Imayavaramban Lakshmanan, Moorthy P. Ponnusamy, Subhankar Chakraborty, Maneesh Jain, Priya Pai, Lynette M. Smith, Subodh M. Lele, Surinder K. Batra
  Abstract
Introduction Current studies indicate that triple negative breast cancer (TNBC), an aggressive breast cancer subtype, is associated with poor prognosis and an early pattern of metastasis. Emerging evidence suggests that MUC4 mucin is associated with metastasis of various cancers, including breast cancer. However, the functional role of MUC4 remains unclear in breast cancers, especially in TNBCs. Results MUC4 promotes proliferation, anchorage-dependent and-independent growth of TNBC cells, augments TNBC cell migratory and invasive potential in vitro, and enhances tumorigenicity and metastasis in vivo. In addition, our studies demonstrated that MUC4 up-regulates the EGFR family of proteins, and augments downstream Erk1/2, PKC-帠, and FAK mediated oncogenic signaling. Moreover, our studies also showed that knockdown of MUC4 in TNBC cells induced molecular changes suggestive of mesenchymal to epithelial transition. We also demonstrated in this study, for the first time, that knockdown of MUC4 was associated with reduced expression of EGFR and ErbB3 (EGFR family proteins) in TNBC cells, suggesting that MUC4 uses an alternative to ErbB2 mechanism to promote aggressiveness. We further demonstrate that MUC4 is differentially over-expressed in invasive TNBC tissues compared to normal breast tissue. Conclusions MUC4 mucin expression is associated with TNBC pathobiology, and its knockdown reduced aggressiveness in vitro, and tumorigenesis and metastasis in vivo. Overall, our findings suggest that MUC4 mucin promotes invasive activities of TNBC cells by altering the expression of EGFR, ErbB2, and ErbB3 molecules and their downstream signaling.
   

  Human OneArray  
 PLoS One. 2013, 8(1):e53795. doi: 10.1371/journal.pone.0053795.
 In Vivo Targeting of ADAM9 Gene Expression Using Lentivirus-Delivered shRNA Suppresses Prostate Cancer Growth by Regulating REG4 Dependent Cell Cycle Progression
 
 
 Che-Ming Liu, Chia-Ling Hsieh, Yun-Chi He, Sen-Jei Lo, Ji-An Liang, Teng-Fu Hsieh, Sajni Josson, Leland W. K. Chung, Mien-Chie Hung, Shian-Ying Sung
  Abstract
Cancer cells respond to stress by activating a variety of survival signaling pathways. A disintegrin and metalloproteinase (ADAM) 9 is upregulated during cancer progression and hormone therapy, functioning in part through an increase in reactive oxygen species. Here, we present in vitro and in vivo evidence that therapeutic targeting of ADAM9 gene expression by lentivirus-delivered small hairpin RNA (shRNA) significantly inhibited proliferation of human prostate cancer cell lines and blocked tumor growth in a murine model of prostate cancer bone metastasis. Cell cycle studies confirmed an increase in the G1-phase and decrease in the S-phase population of cancer cells under starvation stress conditions, which correlated with elevated intracellular superoxide levels. Microarray data showed significantly decreased levels of regenerating islet-derived family member 4 (REG4) expression in prostate cancer cells with knockdown of ADAM9 gene expression. This REG4 downregulation also resulted in induction of expression of p21Cip1/WAF1, which negatively regulates cyclin D1 and blocks the G1/S transition. Our data reveal a novel molecular mechanism of ADAM9 in the regulation of prostate cancer cell proliferation, and suggests a combined modality of ADAM9 shRNA gene therapy and cytotoxic agents for hormone refractory and bone metastatic prostate cancer.  
   

  Human miRNA OneArray  
 Molecular Cancer Therapeutics. 2012, 11(1):244-53. doi: 10.1158/1535-7163.MCT-11-0592.
 Tumor Suppressor MicroRNA-493 Decreases Cell Motility and Migration Ability in Human Bladder Cancer Cells by Downregulating RhoC and FZD4
 
 
 Koji Ueno, Hiroshi Hirata, Shahana Majid, Soichiro Yamamura, Varahram Shahryari, Z. Laura Tabatabai, Yuji Hinoda, Rajvir Dahiya
  Abstract
The purpose of this study was to identify new tumor suppressor microRNAs (miRNA; miR) in bladder cancer, conduct functional analysis of their suppressive role, and identify their specific target genes. To explore tumor suppressor miRs in bladder cancer, miR microarray was conducted using SV-HUC-1, T24, J82, and TCCSUP cells. Expression of miR-493 in bladder cancer (T24, J82, and TCCSUP) cells was downregulated compared with normal SV-HUC-1cells. Also, the expression of miR-493 was significantly lower in bladder cancer tissues than in their corresponding noncancerous tissues. Transfection of miR-493 into T24 or J82 cells decreased their cell growth and migration abilities. On the basis of this result, to identify potential miR-493 target genes, we used target scan algorithms to identify target oncogenes related to invasion and migration. miR-493 decreased 3'-untranslated region luciferase activity and protein expression of FZD4 and RhoC. miR-493 also decreased binding of RhoC and Rock-1. miR-493 is a new tumor suppressor miRNA in bladder cancer and inhibits cell motility through downregulation of RhoC and FZD4.
   

  Human OneArray  
 Clinical Cancer Research. 2012, 18(22):6188-98. doi: 10.1158/1078-0432.CCR-12-1789.
 Overexpression of ecdysoneless in pancreatic cancer and its role in oncogenesis by regulating glycolysis
 
 
 Parama Dey, Satyanarayana Rachagani, Subhankar Chakraborty, Pankaj K. Singh, Xiangshan Zhao, Channabasavaiah Basavaraju Gurumurthy, Judy M. Anderson, Subodh Lele, Michael A. Hollingsworth, Vimla Band, Surinder K. Batra
  Abstract
Purpose: To study the expression and function of a novel cell-cycle regulatory protein, human ecdysoneless (Ecd), during pancreatic cancer pathogenesis. Experimental Design: Immunohistochemical expression profiling of Ecd was done in nonneoplastic normal pancreatic tissues and pancreatic ductal adenocarcinoma lesions (from tissue microarray and Rapid Autopsy program) as well as precancerous PanIN lesions and metastatic organs. To analyze the biological significance of Ecd in pancreatic cancer progression, Ecd was stably knocked down in pancreatic cancer cell line followed by in vitro and in vivo functional assays. Results: Normal pancreatic ducts showed very weak to no Ecd expression compared to significant positive expression in pancreatic cancer tissues as well as in PanIN precursor lesions with a progressive increase in Ecd expression with increasing dysplasia (PanIN-1PanIN-3). Analysis of matched primary tumors and metastases from patients with pancreatic cancer revealed that Ecd is highly expressed in both primary pancreatic tumor and in distant metastatic sites. Furthermore, knockdown of Ecd suppressed cell proliferation in vitro and tumorigenicity of pancreatic cancer cells in mice orthotopic tumors. Microarray study revealed that Ecd regulates expression of glucose transporter GLUT4 in pancreatic cancer cells and was subsequently shown to modulate glucose uptake, lactate production, and ATP generation by pancreatic cancer cells. Finally, knockdown of Ecd also reduced level of pAkt, key signaling molecule known to regulate aerobic glycolysis in cancer cells. Conclusion: Ecd is a novel tumor-promoting factor that is differentially expressed in pancreatic cancer and potentially regulates glucose metabolism within cancer cells.
   

  Human OneArray  
 Carcinogenesis. 2012 Nov 26. [Epub ahead of print].
 MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by down-regulating the Wnt/beta-catenin signaling pathway
 
 
 I-Shan Hsieh, Kung-Chao Chang, Yao-Tsung Tsai, Jhen-Yu Ke, Pei-Jung Lu, Kuen-Haur Lee, Shauh-Der Yeh, Yuh-Ling Chen, Tse-Ming Hong
  Abstract
Prostate cancer (PCa) is a leading cause of mortality and morbidity in men worldwide, and emerging evidence suggests that the CD44(high) prostate cancer initiating cells (TICs) are associated with its poor prognosis. Although microRNAs are frequently dysregulated in human cancers, the influence of microRNAs on PCa malignancy and whether targeting TIC-associated microRNAs inhibit PCa progression remain unclear. Here, we found that miR-320 is significantly downregulated in PCa. Overexpression of miR-320 in PCa cells decreases PCa tumorigenesis in vitro and in vivo. Global gene expression profiling of miR-320-overexpressing PCa cells reveals that downstream target genes of Wnt/帣-catenin pathway and cancer stem cell markers are significantly decreased. MicroRNA-320 inhibits 帣-catenin expression by targeting the 3'-untranslated region of 帣-catenin mRNA. The reduction of miR-320 associated with increased 帣-catenin was also found in CD44(high) sub-population of prostate cancer cells and clinical PCa specimens. Interestingly, knockdown of miR-320 significantly increases the cancer stem-like properties, such as tumorsphere formation, chemoresistance, and tumorigenic abilities, while enriching the population of stem-like TICs among PCa cells. Furthermore, increased miR-320 expression in prostate stem-like TICs significantly suppresses stem cell-like properties of PCa cells. These results support that miR-320 is a key negative regulator in prostate TICs, and suggest developing miR-320 as a novel therapeutic agent may offer benefits for PCa treatment.
   

  Human OneArray  
 Biochemical Pharmacology. 2013, 85(2):234-44. doi: 10.1016/j.bcp.2012.10.026.
 Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1
 
 
 Vineeta Khare, Alex Lyakhovich, Kyle Dammann, Michaela Lang, Melanie Borgmann, Boris Tichy, Sarka Pospisilova, Gloria Luciani, Christoph Campregher, Rayko Evstatiev, Maren Pflueger, Harald Hundsberger, Christoph Gasche
  Abstract
Mesalamine (5-ASA) is widely used for the treatment of ulcerative colitis, a remitting condition characterized by chronic inflammation of the colon. Knowledge about the molecular and cellular targets of 5-ASA is limited and a clear understanding of its activity in intestinal homeostasis and interference with neoplastic progression is lacking. We sought to identify molecular pathways interfered by 5-ASA, using CRC cell lines with different genetic background. Microarray was performed for gene expression profile of 5-ASA-treated and untreated cells (HCT116 and HT29). Filtering and analysis of data identified three oncogenic pathways interfered by 5-ASA: MAPK/ERK pathway, cell adhesion and b-catenin/Wnt signaling. PAK1 emerged as a consensus target of 5-ASA, orchestrating these pathways. We further investigated the effect of 5-ASA on cell adhesion. 5-ASA increased cell adhesion which was measured by cell adhesion assay and transcellular-resistance measurement. Moreover, 5-ASA treatment restored membranous expression of adhesion molecules E-cadherin and b-catenin. Role of PAK1 as a mediator of mesalamine activity was validated in vitro and in vivo. Inhibition of PAK1 by RNA interference also increased cell adhesion. PAK1 expression was elevated in APCmin polyps and 5-ASA treatment reduced its expression. Our data demonstrates novel pharmacological mechanism of mesalamine in modulation of cell adhesion and role of PAK1 in APCmin polyposis. We propose that inhibition of PAK1 expression by 5-ASA can impede with neoplastic progression in colorectal carcinogenesis. The mechanism of PAK1 inhibition and induction of membranous translocation of adhesion proteins by 5-ASA might be independent of its known anti-inflammatory action.
   

  Human OneArray  
 Onkologie. 2012, 35(11):651-6. doi: 10.1159/000343637.
 Overexpression of MMP-1 and VEGF-C is Associated with a Less Favorable Prognosis in Esophageal Squamous Cell Carcinoma
 
 
 Yi-Sheng Tao, Xin-Yi Ma, Da-Min Chai, Li Ma, Zhen-Zhong Feng, Ze-Nong Cheng, Mao-De Lai
  Abstract
BACKGROUND: This study addresses the association of matrix metalloproteinase-1 (MMP-1) and vascular endothelial growth factor-C (VEGF-C) expression in esophageal squamous cell carcinoma (SCC) with clinicopathologic characteristics in the patients. METHODS: We profiled the expression of MMP-1 and VEGF-C by cDNA microarray in 4 cases and by reverse transcription-polymerase chain reaction (RT-PCR) in 14 cases of esophageal SCC. Another 90 cases were reviewed by immunohistochemical examination of paraffin-embedded sections. RESULTS: Expression of MMP-1 and VEGF-C mRNA in normal esophageal tissue and tumor tissue was compared. Data were fully consistent with the results of RT-PCR. Immunohistochemistry showed that compared to the normal mucosa MMP-1 and VEGF-C protein expression was upregulated in both esophageal atypical hyperplasia (n = 16) and esophageal SCC. Depth of tumor invasion, lymph node metastasis, and clinical stage were directly associated with prognosis in all cases. Furthermore, median overall survival and disease-free survival were significantly shorter in patients with a higher expression of MMP-1 and VEGF-C than in patients with lower expression levels. CONCLUSIONS: We demonstrated that the expression of both MMP-1 and VEGF-C mRNA and protein was upregulated in esophageal SCC tissues. Protein expression was associated with progressive tumor stage and poor prognosis in patients with esophageal SCC.
   

  Human OneArray  
 Clinical Cancer Research. 2012, 18(22):6188-98. doi: 10.1158/1078-0432.CCR-12-1789.
 Overexpression of Ecdysoneless (Ecd) in Pancreatic Cancer and its Role in Oncogenesis by Regulating Glycolysis.
 
 
 Parama Dey, Satyanarayana Rachagani, Subhankar Chakraborty, Pankaj K. Singh, Xiangshan Zhao, Channabasavaiah Basavaraju Gurumurthy, Judy M. Anderson, Subodh Lele, Michael A. Hollingsworth, Vimla Band, and Surinder K. Batra
  Abstract
Immunohistochemical expression profiling of Ecd was done in nonneoplastic normal pancreatic tissues and pancreatic ductal adenocarcinoma lesions (from tissue microarray and Rapid Autopsy program) as well as precancerous PanIN lesions and metastatic organs. To analyze the biological significance of Ecd in pancreatic cancer progression, Ecd was stably knocked down in pancreatic cancer cell line followed by in vitro and in vivo functional assays. Normal pancreatic ducts showed very weak to no Ecd expression compared to significant positive expression in pancreatic cancer tissues (mean 簣 SE composite score: 0.3 簣 0.2 and 3.8 簣 0.2 respectively, P < 0.0001) as well as in PanIN precursor lesions with a progressive increase in Ecd expression with increasing dysplasia (PanIN-1-PanIN-3). Analysis of matched primary tumors and metastases from patients with pancreatic cancer revealed that Ecd is highly expressed in both primary pancreatic tumor and in distant metastatic sites. Furthermore, knockdown of Ecd suppressed cell proliferation in vitro and tumorigenicity of pancreatic cancer cells in mice orthotopic tumors. Microarray study revealed that Ecd regulates expression of glucose transporter GLUT4 in pancreatic cancer cells and was subsequently shown to modulate glucose uptake, lactate production, and ATP generation by pancreatic cancer cells. Finally, knockdown of Ecd also reduced level of pAkt, key signaling molecule known to regulate aerobic glycolysis in cancer cells. Ecd is a novel tumor-promoting factor that is differentially expressed in pancreatic cancer and potentially regulates glucose metabolism within cancer cells.
   

  Human OneArray  
 Surgery. 2012, 152(4):704-11. doi: 10.1016/j.surg.2012.07.020.
 Restoration of E-cadherin expression in pancreatic ductal adenocarcinoma treated with microRNA-101
 
 
 Aamer M. Qazi, Oksana Gruzdyn, Assaad Semaan, Shelly Seward, Sreedhar Chamala, Vasu Dhulipala, Seema Sethi, Rouba Ali-Fehmi, Philip A. Philip, David L. Bouwman, Donald W. Weaver, Scott A. Gruber, Ramesh B. Batchu
  Abstract
To investigate the possibility of inhibiting the progression of pancreatic ductal adenocarcinoma (PDAC) by facilitating the expression of E-cadherin through the enforced expression of microRNA-101 (miR-101). In situ hybridization was conducted with archival tissue using a double digoxigenin-labeled probe. Chromatin immunoprecipitation (ChIP) assay was conducted with EZ-Magna ChIPTM A. Gene profile analysis, Western blot, and immunoprecipitation assays were performed using standard protocols. We found that decreased miR-101 expression observed in archival patient tissues was significantly associated with poor prognosis indicated by low-intensity staining in high-grade tumors. ChIP assays using anti-enhancer of zeste homolog 2 (EZH2) antibodies indicated not only the interaction of EZH2 to the CDH1 (E-cadherin) promoter, but also that this interaction was significantly diminished in cells transfected with pre-miR-101. We observed a global downregulation of trimethylated lysine 27 of H3 histone (H3K27me3) along with upregulation of the enzymes histone deacetylase -1 and -2 with the re-expression of miR-101. Further, we observed lesser levels of transcriptional factors that inhibit the CDH1 promoter with pre-miR-101 treatment. Western blot analysis confirmed the enhanced E-cadherin expression. PANC-1 cells transduced with pre-miR-101 displayed markedly attenuated growth in SCID mice. These results suggest the potential therapeutic use of miR-101-enforced expression for inhibition of PDAC.
   

  Human OneArray  
 BMC Cancer. 2012, 12:382. doi: 10.1186/1471-2407-12-382.
 Simultaneous copy number gains of NUPR1 and ERBB2 predicting poor prognosis in early-stage breast cancer
 
 
 Seung-Hyun Jung, Ahwon Lee, Seon-Hee Yim, Hae-Jin Hu, Chungyoul Choi, and Yeun-Jun Chung
  Abstract
The full extent of chromosomal alterations and their biological implications in early breast carcinogenesis has not been well examined. In this study, we aimed to identify chromosomal alterations associated with poor prognosis in early-stage breast cancers (EBC). A total of 145 EBCs (stage I and II) were examined in this study. We analyzed copy number alterations in a discovery set of 48 EBCs using oligoarray-comparative genomic hybridization. In addition, the recurrently altered regions (RARs) associated with poor prognosis were validated using an independent set of 97 EBCs. A total of 23 RARs were defined in the discovery set. Six were commonly detected in both stage I and II groups (> 50%), suggesting their connection with early breast tumorigenesis. There were gains on 1q21.2-q21.3, 8q24.13, 8q24.13-21, 8q24.3, and 8q24.3 and a loss on 8p23.1-p22. Among the 23 RARs, copy number gains on 16p11.2 (NUPR1) and 17q12 (ERBB2) showed a significant association with poor survival (P = 0.0186 and P = 0.0186, respectively). The patients simultaneously positive for both gains had a significantly worse prognosis (P = 0.0001). In the independent replication, the patients who were double-positive for NUPR1-ERBB2 gains also had a significantly poorer prognosis on multivariate analysis (HR = 7.31, 95% CI 2.65-20.15, P = 0.0001). The simultaneous gain of NUPR1 and ERBB2 can be a significant predictor of poor prognosis in EBC. Our study will help to elucidate the molecular mechanisms underlying early-stage breast cancer tumorigenesis. This study also highlights the potential for using combinations of copy number alterations as prognosis predictors for EBC.
   

  Human OneArray  
 The Tohoku Journal of Experimental Medicine. 2012, 226(4):301-11.
 Identification of Distinct Gene Expression Profiles between Esophageal Squamous Cell Carcinoma and Adjacent Normal Epithelial Tissues
 
 
 Yisheng Tao, Damin Chai , Li Ma, Ting Zhang, Zhenzhong Feng, Zenong Cheng, Shiwu Wu, Yanzi Qin, Maode Lai
  Abstract
Esophageal squamous cell carcinoma (ESCC) is a predominant type of esophageal cancer, which is a malignant tumor originating from the esophageal mucosa or gland and is aggressive with poor prognosis. Identification of new gene expression patterns would be helpful for providing new targets for the early detection and treatment of ESCC patients. In the present study, we employed cDNA array technology to compare gene expression profiles between ESCC tissues and adjacent normal epithelial tissues from ESCC patients. There was at least a 4-fold change in the expression levels of 72 genes that were significantly increased and 107 genes that were decreased in ESCC compared with normal esophageal epithelium. Among them, genes known to be involved in ESCC were found, including matrix metalloproteinases, transcription factors SOX-4 and SOX-17, the Wingless-type MMTV integration site family member 2, and cell cycle regulators. Moreover, we have newly identified the two genes that are down-regulated in ESCC: monoamine oxidase A, an enzyme that catalyzes monoamines oxidation and 15-hydroxyprostaglandin dehydrogenase [NAD+], a prostaglandin-synthesizing enzyme that physiologically antagonizes COX-2. Likewise, we found the three genes that are up-regulated in ESCC: CD7, a cell surface glycoprotein member of the immunoglobulin superfamily, LIM-domain kinase 1, a small subfamily with an unique combination of two N-terminal LIM motifs and a C-terminal protein kinase domain, and TTK protein kinase, a previously unidentified member of the kinase family. These newly identified genes may be involved in the progression of the tumor and/or represent properties specific to ESCC.
   

  Human OneArray  
 Experimental Hematology. 2012, 40(11):899-905.e5. doi: 10.1016/j.exphem.2012.06.011.
 Gene Expression Profiling of Acute Graft-Versus-Host Disease after Hematopoietic Stem Cell Transplantation
 
 
 Jan Verner, Jitka Kabathova, Alexandra Tomancova, Sarka Pavlova, Boris Tichy, Marek Mraz, Yvona Brychtova, Marta Krejci, Zbynek Zdrahal, Martin Trbusek, Jana Volejnikova, Petr Sedlacek, Michael Doubek, Jiri Mayer, Sarka Pospisilova
  Abstract
Acute graft-vs-host disease (aGVHD) is a frequent, life-threatening complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Despite that, there are no reliable molecular markers reflecting the onset or clinical course of aGVHD. We performed a pilot study on gene expression profiling in peripheral blood mononuclear cells taken from 15 patients with hematological malignancies who underwent allo-HSCT and developed aGVHD. Based on survival rates after aGVHD, patients were divided into two groups-favorable (all patients alive; median follow-up 40 months) vs unfavorable group (all patients died; median survival 2 months). Two-hundred and eighty genes differentially expressed between these two groups were identified; among them, genes responsible for cytokine signaling, inflammatory response, and regulation of cell cycle were over-represented; interleukin-8, G0S2, ANXA3, and NR4A2 were upregulated in the unfavorable group, CDKN1C was downregulated in the same group. Interestingly, the same genes were also described as overexpressed in connection with autoimmune diseases. This indicates an involvement of similar immune regulatory pathways also in aGVHD. Our data support use of gene expression profiling at aGVHD onset for a prediction of its outcomes.
   

  Human OneArray  
 PLoS ONE. 2012, 7(6):e38659. doi: 10.1371/journal.pone.0038659.
 An Artificial miRNA against HPSE Suppresses Melanoma Invasion Properties, Correlating with a Down-Regulation of Chemokines and MAPK Phosphorylation
 
 
 Xiaoyan Liu, Hongchao Chen, Xiaoling Jiang, Deren Fang, Yan Wang, Dingxian Zhu, Hong Fang
  Abstract
Ribonucleic acid interference (RNAi) based on microRNA (miRNA) context may provide an efficient and safe therapeutic knockdown effect and can be driven by ribonucleic acid polymerase II (RNAP II). In this study, we designed and synthesized miR155-based artificial miRNAs against heparanase (HPSE) constructed with BLOCK-iT? Pol II miR RNAi Expression Vector Kit. The expression levels of HPSE declined significantly in both the mRNA and protein levels in HPSE-miRNA transfected melanoma cells that exhibited reduction of adhesion, migration, and invasion ability in vitro and in vivo. We also observed that HPSE miRNA could inhibit the expressions of chemokines of interleukin-8 (IL8) and chemokine (C-X-C motif) ligand 1 (CXCL1), at both the transcriptional and translational levels. Further study on its probable mechanism declared that down-regulation of IL8 and CXCL1 by HPSE-miRNA may be correlated with reduced growth-factor simulated mitogen-activated kinase (MAPK) phosphorylation including p38 MAPK, c-Jun N-terminal kinase (JNK) and extracellular-signal-regulated kinase (ERK) 1 and 2, which could be rescued by miRNA incompatible mutated HPSE cDNA. In conclusion, we demonstrated that artificial miRNAs against HPSE might serve as an alterative mean of therapy to low HPSE expression and to block the adhesion, invasion, and metastasis of melanoma cells. Furthermore, miRNA-based RNAi was also a powerful tool for gene function study.
   

  Human OneArray  
 Leukemia & Lymphoma. 2012, 53(11):2269-78. doi: 10.3109/10428194.2012.691481.
 Establishment and Characterization of Therapy-Resistant Mantle Cell lymphoma Cell Lines Derived from Different Tissue Sites
 
 
 Adam K. Ahrens, Nagendra K. Chaturvedi, Tara M. Nordgren, Bhavana J. Dave, Shantaram S. Joshi
  Abstract
Mantle cell lymphoma (MCL) is a rare but aggressive form of B cell non-Hodgkin lymphoma in which therapy resistance is common. New therapeutic options have extended survival in refractory MCL but have not provided durable remission. Tools are needed to assess the molecular and genetic changes associated with therapy resistance. Therefore, therapy-resistant MCL cell lines were established from the liver, kidney and lungs of human Granta 519-bearing NOD-SCID (non-obese diabetic-severe combined immunodeficiency) mice following treatment with CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) chemotherapy in combination with bortezomib. The cytomorphologies, immunophenotypes, growth patterns in semi-solid agar, cytogenetic profiles and gene expression differences between these cell lines were characterized to identify major changes associated with therapy resistance. Therapy-resistant cell lines exhibit more aggressive growth patterns and markedly different gene expression profiles compared to parental Granta 519 cells. Thus, these stable therapy-resistant cell lines are useful models to further study the molecular basis of drug resistance and to identify clinically relevant molecular targets in MCL.
   

  Human OneArray  
 Mol Cell Toxicol. 2012, 8(1):9-18.
 Genome-wide microarray investigation of molecular targets and signaling networks in response to high-LET neutron in in vivo-mimic spheroid of human carcinoma
 
 
 Jee Young Kwon, Jung Min Kim, Young Hoon Ji, Young Rok Seo
  Abstract
Although conventional clinical treatment with low LET (linear energy transfer) including gamma-ray and X-ray has been widely used for radiotherapy in various cancers, however, ineffective outcomes occur due to radioresistance caused by p53 mutation. High LET has become alternative since it is able to induce apoptosis regardless of p53 status. Indeed, the molecular mechanisms toward high LET have been suggested. Nevertheless, most studies have been done in monolayer culture system which cannot promptly represent solid tumor microenvironment. Here we applied in vivo mimic 3D spheroid to conduct microarray-based genomic expression and molecular signaling pathway analyses under neutron irradiation. As a result, 3D spheroid system was achieved using thermorevesible gel system. An effective apoptosis-inducible dose of neutron was determined by Acridine Orange (AO) staining in 3D spheroid. Differentially expressed genes in both unique and common responses to neutron were identified in the 3D spheroid compared to the monolayer cells. Total 95 and 169 genes were notably altered at transcription level toward neutron in monolayer and 3D spheroid system, respectively. Based on microarray data, putative apoptosis signaling was depicted using Pathway Studio software. In 3D-in vivo mimic model, the molecular networks interacted with ITGB1, MAP4K4, PAPPA, and SGK1 might be suggested as plausible molecular pathways. In conclusion, we demonstrate novel molecular signaling and corresponding targets of in vitro solid tumor following high LET exposure. This result might provide critical clues for clarification of neutron-induced apoptosis mechanism.
   

  Human OneArray  
 PLoS ONE. 2012, 7(3):e31127. doi: 10.1371/journal.pone.0031127.
 ROR1 Is Expressed in Human Breast Cancer and Associated with Enhanced Tumor-Cell Growth
 
 
 Suping Zhang, Liguang Chen, Bing Cui, Han-Yu Chuang, Jianqiang Yu, Jessica Wang-Rodriguez, Li Tang, George Chen, Grzegorz W. Basak, Thomas J. Kipps
  Abstract
Receptor-tyrosine-kinase-like orphan receptor 1 (ROR1) is expressed during embryogenesis and by certain leukemias, but not by normal adult tissues. Here we show that the neoplastic cells of many human breast cancers express the ROR1 protein and high-level expression of ROR1 in breast adenocarcinoma was associated with aggressive disease. Silencing expression of ROR1 in human breast cancer cell lines found to express this protein impaired their growth in vitro and also in immune-deficient mice. We found that ROR1 could interact with casein kinase 1 epsilon (CK1庰) to activate phosphoinositide 3-kinase-mediated AKT phosphorylation and cAMP-response-element-binding protein (CREB), which was associated with enhanced tumor-cell growth. Wnt5a, a ligand of ROR1, could induce ROR1-dependent signaling and enhance cell growth. This study demonstrates that ROR1 is expressed in human breast cancers and has biological and clinical significance, indicating that it may be a potential target for breast cancer therapy.
   

  Human OneArray  
 European Journal of Pharmaceutical Sciences. 2012, 45(3):367-378.
 Microarray analysis revealed dysregulation of multiple genes associated with chemoresistance to As2O3 and increased tumor aggressiveness in a newly established arsenic-resistant ovarian cancer cell line, OVCAR-3/AsR
 
 
 Pei-Shi Ong, Sui-Yung Chan, Paul C. Ho
  Abstract
The potential of arsenic trioxide (As(2)O(3)) for use as a novel therapy for ovarian cancer treatment has been increasingly recognized. In this study, we developed an arsenic-resistant OVCAR-3 subline (OVCAR-3/AsR) and aimed to identify the molecular mechanisms and signaling pathways contributing to the development of acquired arsenic chemoresistance in ovarian cancer. OVCAR-3/AsR cells were obtained following continual exposure of parental OVCAR-3 cells to low dose As(2)O(3) for 12months. Cytotoxicity of OVCAR-3/AsR cells to As(2)O(3), paclitaxel and cisplatin was investigated. Cell apoptosis and cell cycle distribution following As(2)O(3) treatment of OVCAR-3/AsR cells was also analyzed using flow cytometry. Subsequently, cDNA microarray analysis was performed from the RNA samples of OVCAR-3 and OVCAR-3/AsR cells in duplicate experiments. Microarray data were analyzed using GenespringR and Pathway StudioR Softwares. OVCAR-3/AsR cells showed 9-fold greater resistance to As(2)O(3) and lack of collateral resistance to cisplatin and paclitaxel. Compared with parental OVCAR-3 cells, OVCAR-3/AsR had significantly lower apoptotic rates following As(2)O(3) treatment. These cells were also arrested at both the S phase and G(2)/M phase of the cell cycle after exposure to high concentrations of As(2)O(3). Gene expression profiling revealed significant differences in expression levels of 397 genes between OVCAR-3/AsR and OVCAR-3 cells. The differentially regulated transcripts genes have functional ontologies related to continued cancer cell growth, cell survival, tumor metastasis and tumor aggressiveness. Additionally, numerous gene targets of the nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor showed elevated expression in OVCAR-3/AsR cells. Subsequent pathway analysis further revealed a gene network involving interleukin 1-alpha (IL1A) in mediating the arsenic-resistant phenotype. These results showed that changes in multiple genes and an increased in tumor aggressiveness occurred during the development of acquired chemoresistance to As(2)O(3) in ovarian cancer cells. The functional relevance of these genetic changes should be validated in future studies.
   

  Human miRNA OneArray  
 Cancer Letters. 2012, 314(2):155-65. doi: 10.1016/j.canlet.2011.09.027.
 Estrogen receptor-regulated microRNAs contribute to the BCL2/BAX imbalance in endometrial adenocarcinoma and precancerous lesions
 
 
 Xueli Zhang, Baolin Xing, Youhua Sheng, Huan Lu, Zhenhong Wei, Rong Zhang, Yifeng He
  Abstract
Uncontrolled estrogen exposure can induce an imbalance in BCL2/BAX expression in endometrial cells, leading to precancerous lesions and type I endometrial adenocarcinoma. This study aimed to explore the mechanism underlying this phenomenon. We show that the activated estrogen receptor can suppress the expression of BAX by upregulating a group of microRNAs including hsa-let-7 family members and hsa-miR-27a, thereby promoting an increased BCL2/BAX ratio as well as enhanced survival and proliferation in the affected cells. These ER-regulated hsa-let-7 microRNAs can be detected in most hyperplastic endometria, suggesting their potential utility as indicators of estrogen over-exposure.
   

  Human OneArray  
 OMICS. 2011, 15(10):673-82. doi: 10.1089/omi.2011.0064.
 Grade-Specific Expression Profiles of miRNAs/mRNAs and Docking Study in Human Grade I-III Astrocytomas
 
 
 Pan Chen, Xia-Yu Li, Li-Yang Zhang, Wei Xiong, Ming Zhou, Lan Xiao, Fang Zeng, Xiao-Ling Li, Ming-Hua Wu, Gui-Yuan Li
  Abstract
Although several miRNAs have been identified to be involved in glioblastoma tumorigenesis, little is known about the global expression profiles of miRNAs and their functional targets in astrocytomas at earlier stages of malignancy. In this study the global expression of miRNAs and mRNAs in normal brain tissue samples and grade I-III astrocytomas were analyzed parallelly using microarrays, and the grade-specific expression profiles of them were obtained by unsupervised hierarchical clustering. It was also confirmed that miR-107, miR-124, miR-138, and miR-149 were downregulated significantly in grade I-IV astrocytomas, and overexpression of miR-124 and miR-149 inhibited glioblastoma cell proliferation and migration. Furthermore, grade-specific changes were discovered in the central biological processes, regulatory networks, and signaling pathways associated with dysregulated genes, and a regulatory network of putative functional miRNA-mRNA pairs was defined. In conclusion, our results may contribute to a better understanding of the molecular mechanisms involved in astrocytoma tumorigenesis and malignant progression.
   

  Human OneArray  
 Molecular Carcinogenesis. 2012, 51(3):280-9. doi: 10.1002/mc.20844.
 Green tea catechin extract in intervention of chronic breast cell carcinogenesis induced by environmental carcinogens
 
 
 Kusum Rathore, Hwa-Chain Robert Wang.
  Abstract
Sporadic breast cancers are mainly attributable to long-term exposure to environmental factors, via a multi-year, multi-step, and multi-path process of tumorigenesis involving cumulative genetic and epigenetic alterations in the chronic carcinogenesis of breast cells from a non-cancerous stage to precancerous and cancerous stages. Epidemiologic and experimental studies have suggested that green tea components may be used as preventive agents for breast cancer control. In our research, we have developed a cellular model that mimics breast cell carcinogenesis chronically induced by cumulative exposures to low doses of environmental carcinogens. In this study, we used our chronic carcinogenesis model as a target system to investigate the activity of green tea catechin extract (GTC) at non-cytotoxic levels in intervention of cellular carcinogenesis induced by cumulative exposures to pico-molar 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (B[a]P). We identified that GTC, at a non-cytotoxic, physiologically achievable concentration of 2.5 弮g/mL, was effective in suppressing NNK- and B[a]P-induced cellular carcinogenesis, as measured by reduction of the acquired cancer-associated properties of reduced dependence on growth factors, anchorage-independent growth, increased cell mobility, and acinar-conformational disruption. We also detected that intervention of carcinogen-induced elevation of reactive oxygen species (ROS), increase of cell proliferation, activation of the ERK pathway, DNA damage, and changes in gene expression may account for the mechanisms of GTC's preventive activity. Thus, GTC may be used in dietary and chemoprevention of breast cell carcinogenesis associated with long-term exposure to low doses of environmental carcinogens.
   

  Human miRNA OneArray  
 Cancer Research. 2011, 71(19):6208-19. doi: 10.1158/0008-5472.CAN-11-0073.
 MicroRNA-708 induces apoptosis and suppresses tumorigenicity in renal cancer cells
 
 
 Saini S, Yamamura S, Majid S, Shahryari V, Hirata H, Tanaka Y, Dahiya R.
  Abstract
Cancer pathogenesis is restricted by stresses that compromise cell division and survival. In this study, we identify miR-708, a little studied member of a set of microRNAs that have been implicated in stress control, as an important tumor suppressor in renal cell carcinoma (RCC). miR-708 expression was attenuated widely in human RCC specimens. Restoration of miR-708 expression in RCC cell lines decreased cell growth, clonability, invasion, and migration and elicited a dramatic increase in apoptosis. Moreover, intratumoral delivery of miR-708 was sufficient to trigger in vivo regression of established tumors in murine xenograft models of human RCC. Investigation of the targets of miR-708 identified the inhibitor of apoptosis protein survivin as important. siRNA-mediated knockdown of survivin partially phenocopied miR-708 overexpression suggesting that the proapoptotic role of miR-708 may be mediated primarily through survivin regulation. Additionally, we identified the E-cadherin regulators ZEB2 and BMI1 as likely miR-708 targets. Taken together, our findings define a major tumor suppressive role for miR-708, which may offer an attractive new target for prognostic and therapeutic intervention in RCC.
   

  Mouse OneArray  
 Cancer Genomics Proteomics. 2011 Mar-Apr; 8(2):77-85..
 Small Molecule Inhibition of Cytoskeletal Dynamics in Melanoma Tumors Results in Altered Transcriptional Expression Patterns of Key Genes Involved in Tumor Initiation and Progression
 
 
 Spencer C, Montalvo J, McLaughlin SR, Bryan BA.
  Abstract
Rho kinase signaling plays an important role in the oncogenic process largely through its regulation of F-actin dynamics, and inhibition of this pathway results in reduction in tumor volume and metastasis across a number of tumor types. While the cytoskeletal-regulatory role of Rho kinase has been a topic of in-depth study, the mechanisms linking Rho kinase to altered geneexpression are largely unknown. Global gene expression analysis was performed on melanoma tumors treated with sham or the small molecule inhibitor Y27632. Inhibition of Rho kinase activity in melanoma tumors results in a statistically significant change in gene transcription of 94 genes, many of which are critically involved in tumor initiation and progression. In addition to regulating tumorigenesis through modulation of the phosphoproteome, Rho kinase signaling also contributes to the regulation of the tumor transcriptome.
   

  Human OneArray  
 Oncogene. 2011, 30(23):2610-21. doi: 10.1038/onc.2010.637.
 帢-Catulin knockdown induces senescence in cancer cells.
 
 
 Fan LC, Chiang WF, Liang CH, Tsai YT, Wong TY, Chen KC, Hong TM, Chen YL.
  Abstract
Cellular senescence functions as a tumor suppressor that protects against cancer progression. 帢-Catulin, an 帢-catenin-related protein, is reported to have tumorigenic potential because it regulates the nuclear factor-庥B (NF-庥B) pathway, but little is known about its clinical relevance and the mechanism through which it regulates cancer progression. Here, we found that 帢-catulin mRNA levels were significantly upregulated in cancer cell lines and clinical oral squamous cell carcinomas, which positively correlated with tumor size (P=0.001) and American Joint Committee on Cancer (AJCC) stage (P=0.004). 帢-Catulin knockdown in the OC2 and A549 cancer cell lines dramatically decreased cell proliferation and contributed to cellular senescence, and inhibited OC2 xenograft growth. Mechanistic dissection showed that 帢-catulin depletion strongly induced the DNA-damage response (DDR) in both cell lines, via a p53/p21-dependent pathway in A549 cells, but a p53/p21-independent pathway in OC2 cells carrying mutant p53. Global gene expression analysis revealed that 帢-catulin knockdown altered cell-cycle regulation and DDR pathways at the presenescent stage as well as significantly downregulate several crucial genes related to mitotic chromosome condensation, DDR and DNA repair systems, which suggests that its depletion-induced cellular senescence might be caused by chromosome condensation failures, severe DNA damage and impaired DNA repair ability. Our study provides evidence that 帢-catulin promotes tumor growth by preventing cellular senescence and suggests that downregulating 帢-catulin may be a promising therapeutic approach for cancer treatment.
   

  Human OneArray  
 Cancer Res. 2011, 71(2):349-59. doi: 10.1158/0008-5472.CAN-10-2550.
 HMGA2 overexpression-induced ovarian surface epithelial transformation is mediated through regulation of EMT genes
 
 
 Wu J, Liu Z, Shao C, Gong Y, Hernando E, Lee P, Narita M, Muller W, Liu J, Wei JJ.
  Abstract
The AT-hook transcription factor HMGA2 is an oncogene involved in the tumorigenesis of many malignant neoplasms. HMGA2 overexpression is common in both early and late-stage high-grade ovarian serous papillary carcinoma. To test whether HMGA2 participates in the initiation of ovarian cancer and promotion of aggressive tumor growth, we examined the oncogenic properties of HMGA2 in ovarian surface epithelial (OSE) cell lines. We found that introduction of HMGA2 overexpression was sufficient to induce OSE transformation in vitro. HMGA2-mediated OSE transformation resulted in tumor formation in the xenografts of nude mice. By silencing HMGA2 in HMGA2-overexpressing OSE and ovarian cancer cell lines, the aggressiveness of tumor cell growth behaviors was partially suppressed. Global gene profiling analyses revealed that HMGA2-mediated tumorigenesis was associated with expression changes of target genes and microRNAs that are involved in epithelial-to-mesenchymal transition (EMT). Lumican, a tumor suppressor that inhibits EMT, was found to be transcriptionally repressed by HMGA2 and was frequently lost in human high-grade serous papillary carcinoma. Our findings show that HMGA2 overexpression confers a powerful oncogenic signal in ovarian cancers through the modulation of EMT genes.
   

  Human OneArray  
 J Clin Invest. 2011, 121(1):212-25. doi: 10.1172/JCI43144.
 Thioredoxin-like 2 regulates human cancer cell growth and metastasis via redox homeostasis and NF-庥B signaling
 
 
 Qu Y, Wang J, Ray PS, Guo H, Huang J, Shin-Sim M, Bukoye BA, Liu B, Lee AV, Lin X, Huang P, Martens JW, Giuliano AE, Zhang N, Cheng NH, Cui X.
  Abstract
Cancer cells have an efficient antioxidant system to counteract their increased generation of ROS. However, whether this ability to survive high levels of ROS has an important role in the growth and metastasis of tumors is not well understood. Here, we demonstrate that the redox protein thioredoxin-like 2 (TXNL2) regulates the growth and metastasis of human breast cancer cells through a redox signaling mechanism. TXNL2 was found to be overexpressed in human cancers, including breast cancers. Knockdown of TXNL2 in human breast cancer cell lines increased ROS levels and reduced NF-庥B activity, resulting in inhibition of in vitro proliferation, survival, and invasion. In addition, TXNL2 knockdown inhibited tumorigenesis and metastasis of these cells upon transplantation into immunodeficient mice. Furthermore, analysis of primary breast cancer samples demonstrated that enhanced TXNL2 expression correlated with metastasis to the lung and brain and with decreased overall patient survival. Our studies provided insight into redox-based mechanisms underlying tumor growth and metastasis and suggest that TXNL2 could be a target for treatment of breast cancer.
   

  Human OneArray  
 J Pathol. 2011, 224(3):377-88. doi: 10.1002/path.2871.
 FMNL2 is a positive regulator of cell motility and metastasis in colorectal carcinoma
 
 
 Zhu XL, Zeng YF, Guan J, Li YF, Deng YJ, Bian XW, Ding YQ, Liang L.
  Abstract
FMNL2 is a member of diaphanous-related formins which act as effectors of Rho family GTPases and control the actin-dependent processes such as cell motility or invasion. We previously found that FMNL2 overexpression in metastatic cell lines and tissues of colorectal carcinoma is associated with more aggressive tumour behaviour. Here we used gain-of-function and loss-of-function approaches to investigate the effects of FMNL2 on colorectal carcinoma in vitro and in vivo. Forced expression of FMNL2 caused a significant increase in tumour cell proliferation, motility, invasion in vitro, and metastasis in vivo, whereas FMNL2 depletion showed opposite effects. We examined gene expression profiles following knockdown of FMNL2 in SW480/M5 cells. Expression of 323 genes was up-regulated by more than two-fold, whereas 222 genes were down-regulated by more than two-fold in FMNL2-depleting SW480/M5 cells. Gene ontology analysis showed that most of genes belong to functional categories such as cell cycle, cytoskeleton, transcription factor, and G-protein modulator. Pathway analysis revealed that cytoskeletal regulation by the Rho GTPase pathway, the Wnt pathway, the G-protein pathway, and the P53 pathway were affected by FMNL2. Many of these genes are in functional networks associated with cell proliferation, metastasis, Wnt or the Rho signalling pathway involved in the regulation of FMNL2. The expression of five differentially expressed genes including CXXC4, CD200, VAV1, CSF1, and EPHA2 was validated by real-time PCR and western blot analysis. Thus, FMNL2 is a positive regulator of cell motility, invasion, and metastasis of colorectal carcinoma.
   

  Human OneArray  
 Pathol Oncol Res. 2011, 17(2):357-67. doi: 10.1007/s12253-010-9334-y.
 The Effect of SYT-SSX and Extracellular Signal-Regulated Kinase (ERK) on Cell Proliferation in Synovial Sarcoma
 
 
 Cai W, Sun Y, Wang W, Han C, Ouchida M, Xia W, Zhao X, Sun B.
  Abstract
The character of Synovial sarcoma is the chromosomal translocation t(X; 18)(p11.2;q11.2), which results in the fusion of the SYT gene with a SSX gene. There is little study that could fully elucidate the mechanism of pathogenesis of this fusion transcript. This study is designed to gain more insight into the function of this fusion gene. We evaluated the whole genome expression in SYO-1 cells inhibited as a result of specific small interfering RNA for SYT-SSX. Cell proliferation and apoptosis were analyzed by flow cytometer and MTT. The proteins correlated with proliferation were also detected using western blot. TUNEL and Immunohistochemical stain assessment were also carried out on TMA of SS tissues. The mRNA level reduced over 90% caused by SYT-SSX specific siRNA. Five pathways were employed, that ERK1/2 pathway was differential significantly (p = 0.043218). Meanwhile, down-regulation of SYT-SSX fusion gene expression would inhibit the proliferation of SS cell and the survival rate decreased (34.1%), while apoptotic rate increased (10.92%). After transfected with SYT-SSX-specific siRNA it caused a block in G1/G0 phase (31.99%) of SYO-1 cells compared with control cells. The protein level of ERK1/2, p-ERK, and cyclin D1 altered in same trend with expression of SYT-SSX. In TMA stain assessment, SYT-SSX positive group with high ki-67 LI expressed more cyclin D1and CDK4 than the SYT-SSX negative group. High ki-67 LI was detected in cases with p-ERK expression. Meanwhile, cyclin D1 and CDK4 were shown to be more expressed in tumor cells with p-ERK expression. Our results suggest that the fusion gene SYT-SSX should be considered to play important role on SS cell growth via ERK pathway. This study may be valuable for understanding the pathogenic role and molecular mechanism of the fusion gene SYT-SSX in synovial sarcoma through the proposed genome-wide approach. Furthermore, the research would open up the possibility of using SYT-SSX and ERK as a therapeutic target.
   

  Human miRNA OneArray  
 Mutat Res. 2011, 707(1-2):42-52. doi: 10.1016/j.mrfmmm.2010.12.009.
 Antroquinonol inhibits NSCLC proliferation by altering PI3K/mTOR proteins and miRNA expression profiles
 
 
 Kumar VB, Yuan TC, Liou JW, Yang CJ, Sung PJ, Weng CF.
  Abstract
Antroquinonol a derivative of Antrodia camphorata has been reported to have antitumor effects against various cancer cells. However, the effect of antroquinonol on cell signalling and survival pathways in non-small cell lung cancer (NSCLC) cells has not been fully demarcated. Here we report that antroquinonol treatment significantly reduced the proliferation of three NSCLC cells. Treatment of A549 cells with antroquinonol increased cell shrinkage, apoptotic vacuoles, pore formation, TUNEL positive cells and increased Sub-G1 cell population with respect to time and dose dependent manner. Antroquinonol treatment not only increased the Sub-G1 accumulation but also reduced the protein levels of cdc2 without altering the expression of cyclin B1, cdc25C, pcdc2, and pcdc25C. Antroquinonol induced apoptosis was associated with disrupted mitochondrial membrane potential and activation of Caspase 3 and PARP cleavage in A549 cells. Moreover, antroquinonol treatment down regulated the expression of Bcl2 proteins, which was correlated with the decreased PI3K and mTOR protein levels without altering pro apoptotic and anti apoptotic proteins. Results from the microarray analysis demonstrated that antroquinonol altered the expression level of miRNAs compared with untreated control in A549 cells. The data collectively suggested the antiproliferative effect of antroquinonol on NSCLC A549 cells, which provides useful information for understanding the anticancer mechanism influenced by antroquinonol and is the first report to suggest that antroquinonol may be a promising chemotherapeutic agent for lung cancer.
   

  Human OneArray  
 Cancer Genet Cytogenet. 2010, 203(2):215-21. doi: 10.1016/j.cancergencyto.2010.08.022.
 GSTT1 copy number gain is a poor predictive marker for escalated-dose imatinib treatment in chronic myeloid leukemia: genetic predictive marker found using array comparative genomic hybridization.
 
 
 Koh Y, Kim DY, Park SH, Jung SH, Park E, Kim HJ, Sohn SK, Joo YD, Kim SJ, Shin HJ, Kim SH, Song HS, Chung J, Kim I, Yoon SS, Kim BK, Shin SH, Chung YJ, Park S.
  Abstract
In a study population of 45 patients who were previously enrolled in an imatinib dose escalation trial, genome-wide screening for regions of genetic gains and losses was performed using array comparative genomic hybridization (aCGH). Early molecular response (EMR), defined as >50% reduction in the ratio of BCR-ABL1 to ABL1 within 6 months after dose escalation, was a major endpoint for analysis. After aCGH analysis, copy number change of four genes was investigated in 52 patients as a validation. Copy number gain in 16p11.2 was more frequently observed in patients with EMR than in patients who failed to achieve EMR (P = 0.034). A tendency for increased copy number in 22q11.23 in patients without EMR and for decreased copy number in 17q12 in patients with EMR was observed (P = 0.072 and P = 0.070, respectively). For GSTT1, in 22q11.23, copy number gain was observed in patients without EMR (P = 0.035). GSTT1 copy number gain was related to short time to treatment failure (TTFx) in patients without BCR-ABL1 mutations (P = 0.007). In multivariate analysis, GSTT1 copy number gain was an independent predictive factor for short TTFx (P = 0.020). We conclude that chromosome regions 16p11.2, 22q11.23, and 17q12 are potential locations related to response in imatinib dose escalation therapy for CML. GSTT1 copy number gain is a genetic change affecting outcome in this setting.
   

  Human OneArray  
 Chinese Medical Sciences Journal. 2010, 25(2):100-104.
 Nectin-like molecule 1 inhibits the migration and invasion of U251 glioma cells by regulating the expression of an extracellular matrix protein osteopontin.
 
 
 Yin B, Li KH, An T, Chen T, Peng XZ.
  Abstract
To investigate the molecular mechanism of nectin-like molecule 1 (NECL1) inhibiting the migration and invasion of U251 glioma cells. We infected U251 glioma cells with adeno-nectin-like molecule 1 (Ad-NECL1) or empty adenovirus (Ad). Transwell and wound healing assays were performed to observe the migration of U251 cells incubated with the cell supernatant from Ad-NECL1 or Ad infected U251 cells. DNA microarray was applied to screen the gene expression profile after the restoration of NECL1 in U251 glioma cell lines. The differential expression of osteopontin (OPN), a gene related to migration and invasion, was further analyzed with semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and immunohistochemistry. The restoration of NECL1 inhibited migration of U251 cells significantly (P<0.05). Altogether 195 genes were found differentially expressed by microarray, in which 175 were up-regulated and 20 down-regulated, including 9 extracellular matrix proteins involved in the migration of cells. Both mRNA and protein expressions of OPN, the most markedly reduced extracellular matrix protein, were found decreased in U251 cells after restoration of NECL1. Immunohistochemical assay also detected an increase of OPN in glioma tissues,related with the progressing of malignant grade. A link might exist between NECL1 and the extracellular matrix protein OPN in inhibiting the migration and invasion of U251 glioma cells.
   

  Human OneArray  
 Lung Cancer. 2010, 70(2):152-7. doi: 10.1016/j.lungcan.2010.01.019.
 Copy number alterations and expression profiles of candidate genes in a pulmonary inflammatory myofibroblastic tumor.
 
 
 Seung-Hyun Jungab, Seon-Hee Yimac, Hae-Jin Huab, Chan-Kwon Jungc, Sug-Hyung Leed, Dong Hoon Kime, Yeun-Jun Chung.
  Abstract
Inflammatory myofibroblastic tumor (IMT) is a soft tissue neoplasm composed of myofibroblastic spindle cells accompanied by the inflammatory infiltrate. In addition to its phenotypic ambiguity, pathogenic mechanisms of the IMT also remain elusive. Although several chromosomal aberrations have been identified by karyotyping, detailed characteristics and extent of copy number alterations in IMT are unknown. Copy number alterations of an IMT case were examined using 30K whole-genome oligoarray-comparative genomic hybridization. RNA expression of putative cancer-related genes located in the chromosomal altered regions was assessed by qRT-PCR. We identified seven copy number gained regions, seven lost regions, nine amplifications and six homozygous deletions, which covers 2.5% of total genome. In homozygously deleted regions, RNA levels of putative tumor suppressors, SEMA3B, SEMA3F and SULT2A1, were significantly repressed being consistent with copy number status. In high-level amplification regions, RNA expression of four potential cancer-related genes was examined; GSTT1, ESR1, EVI1 and MITF. Among them, GSTT1 and ESR1 were significantly up-regulated, but EVI1 and MITF showed insignificant elevation of RNA expression. To our knowledge, this is the first genome-wide analysis of copy number alterations in IMT. Most of the putative cancer-related genes identified in this study are supposedly novel in IMT. Taken together, our results will help to elucidate the pathogenic mechanisms of IMT.
   

  Human OneArray  
 Int. J. Biol. Sci. 2010, 6(5):428-42.
 Increased invasiveness and aggressiveness in breast epithelia with cytoplasmic p63 expression.
 
 
 Hsiao YH, Su YA, Tsai HD, Mason JT, Chou MC, Man YG.
  Abstract
Our previous studies revealed that pregnancy associated breast cancer (PABC) had significantly reduced nuclear p63 expression in myoepithelia, while intense cytoplasmic p63 expression in associated epithelia. Our current study assessed these epithelia using immunohistochemistry with a panel of aggressiveness and invasiveness related markers and comparative genomic hybridization (array-CGH) with over 30,000 DNA probes. These epithelia showed several unique alterations, including (1) immunohistochemical and morphological resemblance to invasive cancer, (2) significant gain in copy numbers of DNA coding genes for morphogenesis, angiogenesis, and metastasis, and (3) significant loss in copy numbers of DNA coding genes for tumor suppressors, cell adhesion, and macromolecular complex assembly or intra-cellular trafficking. Detected array-CGH alterations correlated well with in vivo expression of a number of corresponding proteins tested. These findings suggest that aberrant sub-cellular localization of p63 expression in normal or hyperplastic appearing epithelial cells may significant contribute to increased invasiveness and aggressiveness of these cells.
   

  Human OneArray  
 BMC Cell Biol. 2010, 7;11:23. doi: 10.1186/1471-2121-11-23.
 CC3/TIP30 affects DNA damage repair.
 
 
 Fong S, King F, Shtivelman E.
  Abstract
The pro-apoptotic protein CC3/TIP30 has an unusual cellular function as an inhibitor of nucleocytoplasmic transport. This function is likely to be activated under conditions of stress. A number of studies support the notion that CC3 acts as a tumor and metastasis suppressor in various types of cancer. The yeast homolog of CC3 is likely to be involved in responses to DNA damage. Here we examined the potential role of CC3 in regulation of cellular responses to genotoxic stress. We found that forced expression of CC3 in CC3-negative cells strongly delays the repair of UV-induced DNA damage. Exogenously introduced CC3 negatively affects expression levels of DDB2/XPE and p21CIP1, and inhibits induction of c-FOS after UV exposure. In addition, exogenous CC3 prevents the nuclear accumulation of P21CIP in response to UV. These changes in the levels/localization of relevant proteins resulting from the enforced expression of CC3 are likely to contribute to the observed delay in DNA damage repair. Silencing of CC3 in CC3-positive cells has a modest delaying effect on repair of the UV induced damage, but has a much more significant negative affect on the translesion DNA synthesis after UV exposure. This could be related to the higher expression levels and increased nuclear localization of p21CIP1 in cells where expression of CC3 is silenced. Expression of CC3 also inhibits repair of oxidative DNA damage and leads to a decrease in levels of nucleoredoxin, that could contribute to the reduced viability of CC3 expressing cells after oxidative insult. Manipulation of the cellular levels of CC3 alters expression levels and/or subcellular localization of proteins that exhibit nucleocytoplasmic shuttling. This results in altered responses to genotoxic stress and adversely affects DNA damage repair by affecting the recruitment of adequate amounts of required proteins to proper cellular compartments. Excess of cellular CC3 has a significant negative effect on DNA repair after UV and oxidant exposure, while silencing of endogenous CC3 slightly delays repair of UV-induced damage.
   

  Human OneArray  
 Biochemical and Biophysical Research Communications. 2010, 393(3):420-5. doi: 10.1016/j.bbrc.2010.02.010.
 SOX2 modulates alternative splicing in transitional cell carcinoma.
 
 
 Chun-Liang Tung, Pei-Hsuan Hou, Yung-Ling Kao, Yu-Wn Huang, Chiung-Chun Shen, Yi-Hsin Cheng, Shu-Fen Wu, Moon-Sing Lee, Chin Li
  Abstract
Aberrant alternative splicing of key cellular regulators may play a pivotal role in cancer development. To investigate the potential influence of altered alternative splicing on the development of transitional cell carcinoma (TCC), splicing activity in the TCC cell lines TSGH8301 and BFTC905 was examined using the SV40-immortalized uroepithelial cell line SV-HUC-1 as a reference. Our results indicate a significant alteration in splice site selection in the TCC cell lines. By gene expression profiling and subsequent validation, we discovered that sex-determining region Y-box protein 2 (SOX2) is specifically upregulated in BFTC905. Furthermore, ectopic expression of SOX2 modulates alternative splicing of the splicing reporter in vivo. More significantly, using an in vitro pull-down assay, it was found that SOX2 exhibits RNA-binding capability. Our observations suggest that SOX2 modulates alternative splicing by functioning as a splicing factor.
   

  Mouse OneArray  
 Biochemical and Biophysical Research Communications. 2009, 387(3):611-6. doi: 10.1016/j.bbrc.2009.07.093.
 An essential role for DNA methyltransferase 3a in melanoma tumorigenesis.
 
 
 Tao Deng, Ying Kuang, Long Wang, Jiang Li, Zhugang Wang, Jian Fei
  Abstract
Abnormal DNA methylation and associated silencing of tumor suppressor genes are common to many types of cancers. Among the three coordinate DNA methyltransferases (Dnmts), Dnmt1 and Dnmt3b were both shown to be important for cancer cell survival and tumorigenesis. However, the relationship between Dnmt3a and tumorigenesis is still largely unknown. Here, we show that inhibition of Dnmt3a expression, by stable transfection of a Dnmt3a-RNA interference (RNAi) construct dramatically inhibited melanoma growth and metastasis in mouse melanoma models. Microarray analysis revealed that genes critical for the tumor immune response, were implicated in the inhibition of melanoma growth. Expression of a cluster of class I and class II MHC genes, class II transactivator (Ciita), as well as a subset of 5 chemokines (Cxcl9, Cxcl16, Ccl12, Ccl4, and Ccl2) were up-regulated. Furthermore, we determined that the promoter IV of Ciita was significantly demethylated in Dnmt3a-depleted tumors. In addition, several known tumor-related genes, which are critical for developmental processes and cell cycle, were confirmed to be misregulated, including TgfB1, Socs1, Socs2, E2F6, Ccne1, and Cyr61. The results presented in this report strongly suggest that Dnmt3a plays an essential role in melanoma tumorigenesis, and that the underlying mechanisms include the modulation of the tumor immune response, as well as other processes.
   

  Human OneArray  
 EXPERIMENTAL and MOLECULAR MEDICINE. 2009, 41(7):462-70. doi: 10.3858/emm.2009.41.7.051.
 Integrated analysis of copy number alteration and RNA expression profiles of cancer using a high-resolution whole-genome oligonucleotide array.
 
 
 Seung-Hyun Jung, Seung-Hun Shin,Seon-Hee Yim, Hye-Sun Choi, Sug-Hyung Lee and Yeun-Jun Chung.
  Abstract
Recently, microarray-based comparative genomic hybridization (array-CGH) has emerged as a very efficient technology with higher resolution for the genome-wide identification of copy number alterations (CNA). Although CNAs are thought to affect gene expression, there is no platform currently available for the integrated CNA-expression analysis. To achieve high-resolution copy number analysis integrated with expression profiles, we established human 30k oligoarray-based genome-wide copy number analysis system and explored the applicability of this system for integrated genome and transcriptome analysis using MDA-MB-231 cell line. We compared the CNAs detected by the oligoarray with those detected by the 3k BAC array for validation. The oligoarray identified the single copy difference more accurately and sensitively than the BAC array. Seventeen CNAs detected by both platforms in MDA-MB-231 such as gains of 5p15.33-13.1, 8q11.22-8q21.13, 17p11.2, and losses of 1p32.3, 8p23.3-8p11.21, and 9p21 were consistently identified in previous studies on breast cancer. There were 122 other small CNAs (mean size 1.79 mb) that were detected by oligoarray only, not by BAC-array. We performed genomic qPCR targeting 7 CNA regions, detected by oligoarray only, and one non-CNA region to validate the oligoarray CNA detection. All qPCR results were consistent with the oligoarray-CGH results. When we explored the possibility of combined interpretation of both DNA copy number and RNA expression profiles, mean DNA copy number and RNA expression levels showed a significant correlation. In conclusion, this 30k oligoarray-CGH system can be a reasonable choice for analyzing whole genome CNAs and RNA expression profiles at a lower cost.
   

  Human OneArray  
 British Journal of Pharmacology. 2009, 157(5):746-56. doi: 10.1111/j.1476-5381.2009.00223.x.
 Comprehensive evaluation of a novel nuclear factor-kB inhibitor, quinoclamine, by transcriptomic analysis.
 
 
 Cheng WY, Lien JC, Hsiang CY, Wu SL, Li CC, Lo HY, Chen JC, Chiang SY, Liang JA, Ho TY.
  Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) has been linked to the cell growth, apoptosis and cell cycle progression. NF-kappaB blockade induces apoptosis of cancer cells. Therefore, NF-kappaB is suggested as a potential therapeutic target for cancer. Here, we have evaluated the anti-cancer potential of a novel NF-kappaB inhibitor, quinoclamine (2-amino-3-chloro-1,4-naphthoquinone). In a large-scale screening test, we found that quinoclamine was a novel NF-kappaB inhibitor. The global transcriptional profiling of quinoclamine in HepG2 cells was therefore analysed by transcriptomic tools in this study. Quinoclamine suppressed endogenous NF-kappaB activity in HepG2 cells through the inhibition of IkappaB-alpha phosphorylation and p65 translocation. Quinoclamine also inhibited induced NF-kappaB activities in lung and breast cancer cell lines. Quinoclamine-regulated genes interacted with NF-kappaB or its downstream genes by network analysis. Quinoclamine affected the expression levels of genes involved in cell cycle or apoptosis, suggesting that quinoclamine exhibited anti-cancer potential. Furthermore, quinoclamine down-regulated the expressions of UDP glucuronosyltransferase genes involved in phase II drug metabolism, suggesting that quinoclamine might interfere with drug metabolism by slowing down the excretion of drugs. This study provides a comprehensive evaluation of quinoclamine by transcriptomic analysis. Our findings suggest that quinoclamine is a novel NF-kappaB inhibitor with anti-cancer potential.
   

  Human OneArray  
 BMC Biology. 2009, 7:35. doi: 10.1186/1741-7007-7-35.
 Effect of hydroxyurea on the promoter occupancy profiles of tumor suppressor p53 and p73.
 
 
 Vera Huang, Xin Lu, Yong Jiang and Jean YJ Wang.
  Abstract
The p53 tumor suppressor and its related protein, p73, share a homologous DNA binding domain, and mouse genetics studies have suggested that they have overlapping as well as distinct biological functions. Both p53 and p73 are activated by genotoxic stress to regulate an array of cellular responses. Previous studies have suggested that p53 and p73 independently activate the cellular apoptotic program in response to cytotoxic drugs. The goal of this study was to compare the promoter-binding activity of p53 and p73 at steady state and after genotoxic stress induced by hydroxyurea.We employed chromatin immunoprecipitation, the NimbleGen promoter arrays and a model-based algorithm for promoter arrays to identify promoter sequences enriched in anti-p53 or anti-p73 immunoprecipitates, either before or after treatment with hydroxyurea, which increased the expression of both p53 and p73 in the human colon cancer cell line HCT116-3(6). We calculated a model-based algorithm for promoter array score for each promoter and found a significant correlation between the promoter occupancy profiles of p53 and p73. We also found that after hydroxyurea treatment, the p53-bound promoters were still bound by p73, but p73 became associated with additional promoters that that did not bind p53. In particular, we showed that hydroxyurea induces the binding of p73 but not p53 to the promoter of MLH3, which encodes a mismatch repair protein, and causes an up-regulation of the MLH3 mRNA.These results suggest that hydroxyurea exerts differential effects on the promoter-binding functions of p53 and p73 and illustrate the power of model-based algorithm for promoter array in the analyses of promoter occupancy profiles of highly homologous transcription factors.
   

  Human OneArray  
 MOLECULAR PHARMACOLOGY. 2009, 75(1):151-7. doi: 10.1124/mol.108.049502.
 Vanillin Inhibits Matrix Metalloproteinase-9 Expression through Down-Regulation of Nuclear Factor- B Signaling Pathway in Human Hepatocellular Carcinoma Cells.
 
 
 Liang JA, Wu SL, Lo HY, Hsiang CY, Ho TY
  Abstract
Vanillin has been reported to exhibit anti-invasive and antimetastatic activities by suppressing the enzymatic activity of matrix metalloproteinase-9 (MMP-9). However, the underlying mechanism of anti-invasive activity remains unclear so far. Herein we demonstrate that vanillin reduced 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 gelatinolytic activity and suppressed cell invasion through the down-regulation of MMP-9 gene transcription in HepG2 cells. Vanillin significantly reduced the 6.6-fold invasive capacity of HepG2 cells in noncytotoxic concentrations, and this anti-invasive effect was concentration-dependent in the Matrigel invasion assay. Moreover, vanillin significantly suppressed the TPA-induced enzymatic activity of MMP-9 and decreased the induced mRNA level of MMP-9. Analysis of the transcriptional regulation indicated that vanillin suppressed MMP-9 transcription by inhibiting nuclear factor-kappaB (NF-kappaB) activity. Western blot further confirmed that vanillin inhibited NF-kappaB activity through the inhibition of IkappaB-alpha phosphorylation and degradation. In conclusion, vanillin might be a potent antiinvasive agent that suppresses the MMP-9 enzymatic activity via NF-kappaB signaling pathway.
   

  Human OneArray  
 Beijing Journal of Stomatology. 2008, 16(6):309-311.
 Differential gene expression related to oxidative stress in oral cancer and oral precancerous lesion cells.
 
 
 Zhang Xin Yan, Zhang Min, Sun Zheng, TANG Xiao-fei
  Abstract
To identify differentially expressed genes related to oxidative stress in oral squamous cell carcinoma and oral precancerous lesion cells and investigate the mechanism and relationship between oxidative damage and oral cancer development. cDNA microarray analysis was used to examine the differences in gene expression between oral carcinoma cell lines Tca8113, KB and oral precancerous lesion cell line DOK. Twenty-eight differentially expressed genes related to oxidative stress were detected in oral squamous cell carcinoma and oral precancerous lesion cells1 Among them, 9 genes were separately up-regulated from two folds to six folds, including PRDX, SOD, GSS, GST, TXNRD, SEPX1, etc. High expression of cytokeratin 10, 17 and 7 were also observed in the cells of oral squamous cell carcinomas. Oxidative damage may be related to the carcinogenesis of oral cancer, and oxidative stress damage may activate some signal pathway related to cytokeratinization which leads to carcinogenesis.
   

  Human OneArray  
 INTERNATIONAL JOURNAL OF ONCOLOGY. 2008, 33(4):767-76. doi: 10.3892/ijo_00000063.
 Histone deacetylase inhibitor scriptaid induces cell cycle arrest and epigenetic change in colon cancer cells.
 
 
 EUN JU LEE1, BO BIN LEE, SOON-JA KIM, YONG-DOO PARK, JOOBAE PARK, Duk-Hwan Kim
  Abstract
Histone deacetylase inhibitors (HDACIs) are involved in cell growth, apoptosis and differentiation. This study aimed to investigate the effects of HDACI scriptaid on histone modification, demethylation, cell growth, cell cycle and apoptosis in the RKO colorectal cancer cell line and screening for scriptaid-induced genes. RKO cells were treated with 5-aza-2'-deoxycytidine (5-aza-dC), trichostatin A (TSA) or scriptaid at different concentrations. Histone modification and methylation status of a silenced p16 gene were analyzed using chromatin immunoprecipitation and methylation-specific PCR, respectively. Flow cytometry was performed for the analysis of cell cycle and apoptosis. Scriptaid-induced expression was analyzed using Human OneArray chip. Scriptaid resulted in the demethylation and re-expression of a hypermethylated p16 gene along with 5-aza-dC synergistically in the RKO cells, but not alone. Scriptaid induced modifications of core histone tails important in euchromatin structure: increases in acetyl-H3-K9 and dimethyl-H3-K4 and a decrease in dimethyl-H3-K9. Cell growth was inhibited by scriptaid in a dose-dependent manner. Cell cycle analysis showed that scriptaid induced G1 arrest at 0.5 and 1.0 microM concentrations and G1 and G2/M arrest at 2.0 microM. Scriptaid did not have a significant effect on apoptosis in RKO cells. An altered expression of 278 genes was observed in RKO cells in response to scriptaid treatment. In conclusion, the present study suggests that scriptaid may be effective in growth suppression and cell cycle arrest and in the reversal of repressive chromatin marks at the promoter region of a hypermethylated p16 gene in colorectal cancer.
   

  Human OneArray  
 The American Journal of Chinese Medicine. 2008, 36(4):783-97. doi: 10.1142/S0192415X08006235.
 Relationship Between San-Huang-Xie-Xin-Tang and Its Herbal Components on the Gene Expression Profiles in HepG2 Cells.
 
 
 Cheng WY, Wu SL, Hsiang CY, Li CC, Lai TY, Lo HY, Shen WS, Lee CH, Chen JC, Wu HC, Tin-Yun Ho
  Abstract
Traditional Chinese medicine (TCM) has been used for thousands of years. Most Chinese herbal formulae consist of several herbal components and have been used to treat various diseases. However, the mechanisms of most formulae and the relationship between formulae and their components remain to be elucidated. Here we analyzed the putative mechanism of San-Huang-Xie-Xin-Tang (SHXXT) and defined the relationship between SHXXT and its herbal components by microarray technique. HepG2 cells were treated with SHXXT or its components and the gene expression profiles were analyzed by DNA microarray. Gene set enrichment analysis indicated that SHXXT and its components displayed a unique anti-proliferation pattern via p53 signaling, p53 activated, and DNA damage signaling pathways in HepG2 cells. Network analysis showed that most genes were regulated by one molecule, p53. In addition, hierarchical clustering analysis showed that Rhizoma Coptis shared a similar gene expression profile with SHXXT. These findings may explain why Rhizoma Coptis is the principle herb that exerts the major effect in the herbal formula, SHXXT. Moreover, this is the first report to reveal the relationship between formulae and their herbal components in TCM by microarray and bioinformatics tools.
   

  Human OneArray  
 Cancer Biology & Therapy. 2008, 7(4):577-86. doi: 10.1371/journal.pone.0030107.
 Molecular mechanisms underlying selective cytotoxic activity of BZL101, an extract of Scutellaria barbata, towards breast cancer cells.
 
 
 Fong S, Shoemaker M, Cadaoas J, Lo A, Liao W, Tagliaferri M, Cohen I, Emma Shtivelman
  Abstract
We studied the mechanism of the cytotoxic activity of BZL101, an aqueous extract from the herb Scutellaria barbata D. Don, which is currently in phase II clinical trial in patients with advanced breast cancer. The phase I trial showed favorable toxicity profile and promising efficacy. We report here that BZL101 induces cell death in breast cancer cells but not in non-transformed mammary epithelial cells. This selective cytotoxicity is based on strong induction by BZL101 of reactive oxygen species (ROS) in tumor cells. As a consequence, BZL101 treated cancer cells develop extensive oxidative DNA damage and succumb to necrotic death. Data from the expression profiling of cells treated with BZL101 are strongly supportive of a death pathway that involves oxidative stress, DNA damage and activation of death-promoting genes. In breast cancer cells oxidative damage induced by BZL101 leads to the hyperactivation of poly (ADP-ribose) polymerase (PARP), followed by a sustained decrease in levels of NAD and depletion of ATP, neither of which are observed in non-transformed cells. The hyperactivation of PARP is instrumental in the necrotic death program induced by BZL101, because inhibition of PARP results in suppression of necrosis and activation of the apoptotic death program. BZL101 treatment leads to the inhibition of glycolysis selectively in tumor cells, evident from the decrease in the enzymatic activities within the glycolytic pathway and the inhibition of lactate production. Because tumor cells frequently rely on glycolysis for energy production, the observed inhibition of glycolysis is likely a key factor in the energetic collapse and necrotic death that occurs selectively in breast cancer cells. The promising selectivity of BZL101 towards cancer cells is based on metabolic differences between highly glycolytic tumor cells and normal cells.
   

  Human OneArray  
 Pharmacological research. 2007, 56(6):474-82. doi:10.1016/j.phrs.2007.09.009.
 Microarray analysis of vanillin-regulated gene expression profile in human hepatocarcinoma cells.
 
 
 Cheng WY, Hsiang CY, Bau DT, Chen JC, Shen WS, Li CC, Lo HY, Wu SL, Chiang SY, Tin-Yun Ho
  Abstract
Vanillin is one of the most widely used flavor compounds in food and personal products. It has been reported that vanillin is able to inhibit mutagenesis induced by chemical and physical mutagens, and to suppress the invasion and migration of cancer cells. Herein we used the oligonucleotide microarray approach to study gene expression profile of vanillin-treated human hepatocarcinoma cells. Microarray data followed by gene ontology (GO) investigation displayed that vanillin-affected clusters of genes involved in cell cycle and apoptosis. Genes down-regulated by vanillin were grouped into three GO categories, regulation of cellular process, cell cycle, and death. Furthermore, most of the down-regulated genes were associated with cancer progression. Knowledge-based analysis further indicated that Fos may play a central role in the regulation of gene expression network. Analysis of Fos-related transcription factor, activator protein 1 (AP-1), showed that vanillin inhibited AP-1 activity in a dose-dependent manner. Furthermore, the phosphorylation of extracellular signal-regulated protein kinase (ERK) was diminished with increasing concentrations of vanillin, indicating that vanillin-regulated AP-1 activity via ERK pathway. In conclusion, our data suggested that vanillin exhibited the anticancer potential by the regulations of cell cycle and apoptosis. Moreover, its regulation may involve the suppression of a central molecule, AP-1.